

Checked By: Kevin Leung

Checked By: Kevin Leung

Checked By: Kevin Leung

Tescepp Final PIR and EIS

Checked By: K Leung

Checked By: Kevin Leung

Tes@EPBFinaBBIR and EIS

Checked By: K Leung

Tested By CEPP Final PIR and EIS

Checked By: K Leung

Tes CEPP Final PIR and EIS

Checked By: K Leung

TesCEPPEFinal PtRand EIS

Checked By: K Leung

Tested Prinal PIR and EIS

Checked By: K Leung

Tested By: Bolooki CEPP Final PIR and EIS

Checked By: K Leung

Checked By: Kevin Leung

Tes CEPP Final PIR and EIS

Checked By: K Leung

Tes@EPPBFinaBPIR and EIS

Checked By: K Leung

TesCEPPErinalPriR and EIS

Checked By: K Leung

Checked By: Kevin Leung

CEPP Final PIR and EIS Tested By: Bolooki

CEPP Final PIR and EIS Tested By: M Mazo

CEPP Final PIR and EIS Tested By: Bolooki

App A Annex G-1-1361

CEPP Final PIR and EIS Tested By: Bolooki

CEPP Final PIR and EIS Tested By: Bolooki

CEPP Final PIR and EIS Tested By: Bolooki

CEPP Final PIR and EIS Tested By: Bolooki

CEPP Final PIR and EIS Tested By: Bolooki

CEPP Final PIR and EIS

CEPP Final PIR and EIS App A Annex G-1-1387

Tested By: CAMARAZA
CEPP Final PIR and EIS

Checked By: MAZO

Tested By: CAMARAZA

CEPP Final PIR and EIS

Checked By: MAZO

App A Annex G-1-1389

July 2014

Tested By: CAMARAZA
CEPP Final PIR and EIS

Checked By: MAZO

Tested By: CAMARAZA Checked By: MAZO

CEPP Final PIR and EIS July 2014

Tested By: CAMARAZA
CEPP Final PIR and EIS

Checked By: MAZO

APPENDIX 5 LABORATORY TEST RESULTS ROCK QUALITY TESTS

APPENDIX 5 LABORATORY TEST RESULTS ROCK QUALITY TESTS

AAppendix 5 - Laboratory Test Results: Rock Quality Tests EAA Reservoir Project 05 05 0013 016A Work Order No: 4

Compressive Strength of Rock Cores

Core Identification	Core Depth (feet)	Compressive Strength (psi)
CB-0158	1.0-5.5	2600
CB-0159	4.75-9.75	1250
CB-0161	4.5-8.0	1430
CB-0163	5.5-10.5	4340
CB-0165	6.5-11.5	3690
CB-0167	6.5-11.5	1530
CB-0172	2.5-7.5	1570
CB-0173	5.0-5.5	1860
CB-0175	3.5-6.5	4620
CB-0176	1.0-5.0	2650
CB-0177	4.5-9.5	3090
CB-0178	9.5-12.0	433
CB-0179	0.4-3.5	1676
CB-0187	2.5-3	1105
CB-0187	25-30	2400
CB-0188	1.0-6.0	650
CB-0211	5.0-10.0	5200
CB-0212	10.0-15.0	2710
CB-0212	3.0-3.5	5920
CB-0184	4-9	1870

Notes:

1 Core compressive strength determined in general accordance with ASTM D2938

EAA Reservoir Project 05 05 0013 016A Work Order No: 6

Compressive Strength of Rock Cores

-0398

- 0398

CPOG-EMPES -CB)									
Core Identification	9	Core Depth (feet)	Compressive Strength (psi)						
CB-0248 / - C	0346	5.0-10.0	5010						
CB-0260 -e	358	8.5-13.0	2500						
CB-0268 - O	365	6.5-11.5	1500						
CB-0276 - O.	372	4.0-9.0	3570						
CB-0276 - C	372	10.0-14.0	1570						
CB-0277 - 0	373	4.5-9.5	1000						
CB-0277 -0	373	9.5-14.5	4430						
CB-0281 -0	377	5.5-10.5	3880						
CB-0281 - 03	377	10.5-15.5	2250						

2100

1040

Notes:

CB-0302

CB-0302

1 Core compressive strength determined in general accordance with ASTM D2938

7.0-12.0

12.0-17.0

Nodarse & Associates, Inc.

								of collections are all from		Annie wy april de Maria Anderson (m. 1914).							
	Comments				mikantan kandidaksi oleha menantaja dalam kandidaksi menangan kandidaksi kandidaksi kandidaksi kandidaksi kand	e de la companya del la companya de							na karingan juuri disebi jada dii jada	од селанда и подава дей одна подавой видось де селандей делан од бого се однава дей од селандей де			на интейнация денамення выполня выполн
	Strenght(psi)	8926	874	2215	1053	8389	3195	0808	2979	4916	096	3095	1481	1867	2119	1805	
	Load (lbs)	47180	4220	10700	5120	41020	15530	39270	14090	23890	4650	15040	7200	8440	10150	8720	
	Avg Diameter(inches)	2.48	2.48	2.48	2.49	2.49	2.49	2.49	2.46	2.49	2.49	2.49	2.49	2.47	2.47	2.48	
9	Zength(inches)	1-0266 4.83	-0250 4.83	-0250 ⁴	-0293 83	-0303 4.86	-0304 4.86	-0306 4.86	-03/4 4.86	-0314 4.73	-03/8 4.86	-0318 4.86	-0320 4.86	-0328 4.52	-0388 4.79	-0392 4.83	
	Sample No.	7-12.4	9.6-10.9ft	24-29ft	41.5-45.5#	10-15ft	9.5-14.5ft	8.25-11.0ft	26.1-27#	32.9-34.11	19.9-25ft	25.0-30.0ft	17.5-18.1#	2.0-7.0ft	0-5.0#	0-5.0ff	
	Sa	CB 0162.	CB-0191	CB-0191	CB-0194	CB-0204	CB-0206	CB-0208	CB-0216	CB-0216	CB-0220	CB-0220	CB-0222	CB-0231	CB-0292	CB-0296	opurer transactor freshold play on an extraction of the control of

Project No: Project Name:

05-05-0013-101 W.O.#5

EAA Resevior Black & Veatch

O

Ā

Requested by:

Nodarse & Associates, Inc.

							(S)		Minimpoletvey		a (Andreas)	***************************************	and Perfering Schools		and the second s				ingeheja _k unezitzirieni
							Comments	ademanderacy (mineral regional designation of the process of the contract of t		Maria de mano de la maria de mana de m				To province to representative control of the contro					
	ASTM D 6473-99 Test Method	O A Service Control of Control	o Absorption sion Control				Absorption		5.26	CONTRACTOR CANONICATION	9.02		7.96	Common and the state of the sta	10.43	2.69	15.1	7.85	
	ASTM D 6473-	Coories Crowit	of Rock for Erosion Control				Apparent Sp. Gr	And the state of t	2.63	ing (Kampakatan) panon pipakan) (Bata) pandan panda	2.66		2.61		2.61	2.64	2.72	2.31	
						<i>C</i>	Bulk (SSD) Sp. Gr		2.43		2.34		2.42		2.26	2.53	2.22	2.36	
	ерей колдендер от при					としては	Bulk Sp G.		2.31		2.14		2.31		2.05	2.47	1.93	2.19	
						リンナスシ	Oven Dry Wt. (A) gr.		516.8		1062	orea na go dentra con de la constante de la co	1555.2		889.1	1310.8	889.2	1059.4	
		VO#5					SSD Wt. (B) gr.		544.1		1157.8		1631.5		981.7	1346.1	1023.5	1142.6	
COO7#2/O1	EAA Resivior A-1	05-05-0013-101 WO#5	Chris B	See sample #	Chris B		Mt.inH2O (C) gr.	- 0290	320.1	-0293	663.1	0.800	958.1	-0303	548.2	226 815.2	-03/8 562.5	-0375 658.2	
Section of the second section of the second	Project Name:	Project No.	Tested by:	Depth	Checked by:	Referentiation dispression agreement of the contract of the co	Sample No.		CB-0191 24-29ft		CB-0194 37.8-38.5ft		CB-0201 10-10.7ft		CB-0204 10-15ft	CB-0208 8.25-11ft	CB-0220 19.9-25ft	CB-0220 25-30.0ft	

Bulk spec. gravity =A/(B-C)

Bulk spec. gravity(SSD)=B/(B-C)

Apparent spec. gravity=A(A-C)

CEDA Elus Date:

Teste

Absorption = [(B-A)/A]X100%

EAA Reservoir 05 05 0013 106A Work Order No: 4

Rock Core Specific Gravity and Absorption

CPOS-EARLE	<u> </u>			D B /000\		1
	Core	Core Depth	Bulk	Bulk (SSD)	Apparent	Absorption
	Identification	(feet)	Specific Gravity	Specific Gravity	Specific Gravity	(%)
CB-03/2	CB-0214	32.5-33.2	1.501	1.600	1.680	7.38
	CB-0214		2.340	2.440	2.600	
C3-0324		4.74-9.75				4.35
(3-0324	CB-0226	16.0-21.0	2.390	2.460	2.560	2.90
CB-0325	CB-0227	5.75-10.75	2.400	2.480	2.600	3.27
CB-0326	CB-0228	6.5-11.5	2.204	2.360	2.610	7.11
C3-0326		17.5-22.5	2.010	2.210	2.550	11.0
CB-6287	CB-0187	2.5-3.0	2.000	2.210	2.550	10.97
CB-0289	CB-0189	20.5-25.5	2.460	2.550	2.700	3.56
CB-0309	CB-0211	5.0-10.0	2.460	2.510	2.585	1.83
CB-0310	CB-0212	10.0-15.0	1.740	1.890	2.030	8.41
CB0310	CB-0212	30.0-35.0	2.960	3.140	3.600	6.10
CB-03/1	CB-0213	23.5-28.5	1.910	2.170	2.570	13.28
CB-0274	CB-0178	9.5-12.0	2.260	2.350	2.500	4.10
CB-0275	CB-0179	0.4-5.5	2.400	2.500	2.680	4.44
CB-0276	CB-0180	1.0-4.5	2.240	2.340	2.501	4.70
CB-0279	CB-0184	4.0-9.0	2.220	2.370	2.603	6.70
C3-028	CB-0187	25.0-30.0	2.470	2.520	2.601	2.05
C13-018B	CB-0188	1.0-6.0	2.330	2.460	2.670	5.40
CB-0267	CB-0170	6.0-9.5	2.320	2.450	2.660	5.35
CB-0269		2.5-7.5	2.520	2.600	2.730	3.10
(13-0270		5.0-8.5	2.350	2.420	2.550	3.32
CB-0271	CB-0175	3.5-6.5	2.620	2.680	2.700	2.10
CB_0272	CB-0176	1.0-5.0	2.400	2.500	2.700	4.65
3-0273	CB-0177	4.5-9.5	2.140	2.240	2.380	4.73
C 5_0256	CB-0158	1.0-5.5	2.410	2.500	2.621	3.30
CB-0257	CB-0159	4.75-9.75	2.030	2.190	2.410	7.71
CB-0259	CB-0161	4.5-8.0	1.440	1.850	2.480	29.5

Notes:

Specific Gravity and Absorption determined in general accordance with ASTM D6473-99.

EAA Reservoir 05 05 0013 106A Work Order No: 4

Rock Core Specific Gravity and Absorption

CPOS-EARRS-

·	Core Identification	Core Depth (feet)	Bulk Specific Gravity	Bulk (SSD) Specific Gravity	Apparent Specific Gravity	Absorption (%)
CB-0261	CB-0163	5.5-10.5	2.320	2.440	2.650	5.39
CB-0262	CB-0165	6.5-11.5	2.430	2.500	2.580	2.39
CB-0264	CB-0167	6.5-11.5	2.270	2.380	2.550	4.93
CB-0327	CB-0229	4.0-9.0	2.160	2.304	2.510	6.53
C13-0327	CB-0229	18.0-23.0	1.901	2.090	2.330	9.63
CB-0327	CB-0229	23.0-28.0	1.970	2.190	2.540	11.57
CB-033/	CB-0233	2.5-7.5	2.310	2.410	2.550	4.0

Notes:

Specific Gravity and Absorption determined in general accordance with ASTM D6473-99.

EAA Reservoir 05 05 0013 106A Work Order No: 6

Rock Core Specific Gravity and Absorption

CPOS- EARRS-CBA

Core	Core Depth	Bulk-	Bulk (SSD)	Apparent	Absorption
Identification	(feet)	Specific	Specific	Specific	(%)
		Gravity	Gravity	Gravity	
CB-0248(-0346	5.0-10.0	2.42	2.49	2.60	2.90
CB-0260 -0358	2.0-7.0	2.40	2.50	2.50	1.51
CB-0260-0358	8.5-13.0	2.17	2.30	2.50	6.10
CB-02686365	6.5-11.5	1.84	2.13	2.60	16.00
CB-02760372	4.0-9.0	2.17	2.34	2.60	7.87
CB-0276 0372	10.0-14.0	2.36	2.45	2.60	3.97
CB-0277 6373	4.5-9.5	2.23	2.37	2.60	6.20
CB-02770373	9.5-14.5	2.23	2.39	2.70	7.10
CB-0281 0377	5.5-10.5	2.19	2.33	2.60	6.78
CB-02810377	10.5-15.5	2.47	2.51	2.60	1.87
CB-0302 0398	7.0-12.0	2.04	2.20	2.40	7.90
CB-0302 0398	12.0-17.0	2.15	2.32	2.60	8.04

Notes: Specific Gravity and Absorption determined in general accordance with ASTM D6473-99.

Nodarse & Associates, Inc.

Nodarse & Ass			
	EAA Resivior A-1	05-05-0013-101 WO#4	Chris B
CEPP Final	BIN Project Name:	Project No:	SI Tested by:

Checked by:

Depth

ASTM D 6473-99 Test Method

Specific Gravity & Absorption of Rock for Erosion Control

	Comments		and the second	and the second s			
	Absorption	3.02	3.12	2.93			
	Bulk (SSD) Sp. Gr Apparent Sp. Gr	2.53	2.59	2.52			
	Bulk (SSD) Sp. Gr	2.42	2.48	2.42			And the state of t
	Bulk Sp.G.	2.35	2.4	2.35			
	Oven Dry Wf. (A) gr.	680.1	569.9	741.7			
	SSD Wt. (B) gr.	2.007	587.7	763.4			The state of the s
В алектира на подреждения в предоставления в предоста	Wt.inH2O (C) gr. SSD Wt. (B)	A	350.3	E. 744			
в Воличний в сертину (виденти в ведений в ведений В ведений в ведений в ведений ведений в ведений ведений ведений ведений ведений ведений ведений ведений ведени	Sample No.	Rip Rap sample 1	Rip Rap sample 2	Rip Rap sample 3			

Bulk spec, gravity =AV(B-C)

Bulk spec. gravity(SSD)=B/(B-C)

Apparent spec. gravity=A(A-C) find Absorption = [(B-A)/A]X100%

EAA Reservoir A-1 Laboratory Work Order No. 4, Rip Rap Samples Los Angles Abrasion

	Sample Number		2	3
	Percent Wear	31.3	31.3	30.6
- Contraction	Grading	"A"	"A"	64.39

Note: Laboratory testing completed by Wingerter Laboratories Inc. of Miami Florida Laboratory testing completed in accordance with ASTM C-131 & C-535.

EAA Reservoir A-1 Laboratory Work Order No. 4, Rip Rap Samples Soundness of Rock

Sample Number	1	2	3
Percentage Loss	0%	0%	0%

Notes: Laboratory testing completed in general accordance with ASTM D5240.

APPENDIX 5 LABORATORY TEST RESULTS CARBONATE CONTENT

LABORATORY TEST RESULTS FOR EAA RESERVOIR A-1

Nodarse & Associates, Inc. Project No. 05-05-0013

Boring Number	Sample Depth (ft)	Carbonate Content (%)
TC1-N-2	8.5	79.0
TC1-N-12	58.5	63.2
TC1-N-16	78.5	45.9
TC1-E-3	9.0	82.3
TC1-E-7	28.5	14.5
TC1-E-14	63.5	41.6
TC1-E-16	73.5	69.1
TC1-W-4	18.5	91.9
TC1-W-7	33.5	56.5
TC1-W-15	73.5	65.0
TC1-W-20	98.5	67.7
TC1-S-4	18.5	87.1
TC1-S-9	43.5	25.3
TC1-S-15	73.5	68.9
TC1-S-16	78.5	67.8
TC1-S-8	38.5	40.7

EAA Reservoir 05 05 0013 106A Work Order No. 3 Carbonate Test Data

10B-0266

Boring Number	Depth (feet)	Carbonate Content (%)
CB 169 CPOS - ZPARS	5.5-8.5	76.6
CB 171065-EARS- CB-0268	7.0-10.0	81.6
CB 1750805-CHARG-CB-0271	13.5-15.0	81.8
CB 186085-EAARS-CB 0281	33.5-35.0	34.7

App A Annex G-1

Geological Investigations North of Redline

227 TC-2

Project Name: EAA Project No:____ Date:

Carbonates

$$C = \frac{(W-R)}{W} \times 100$$

Crucible Number:		
Wt. Of Crucible:	В	72.7778
Mass of Sample:	W	1.0000
Crucible + Insoluble Residue After Burn:	A	72.8828
Insoluble Residue: $A-B = R$	R	0.1050

C = % of Carbonates of Calcium and Magnesium

W = Mass Of Sample
R = Insoluble Residue

Carbonate Range:

Geological Investigations North of Redline

Project No:___

Carbonates

$$C = \frac{(W-R)}{W} \times 100$$

Crucible Number:		05
Wt. Of Crucible:	В	76.4745
Mass of Sample:	W	1.0000
Crucible + Insoluble Residue After Burn:	Α	77.2415
Insoluble Residue: $A-B = R$	R	0.7670

c = % of carbonates of Calcium and Magnesium

W = Mass Of Sample

R = Insoluble Residue

Carbonate Range:

1C-2 W Geological Investigations North of Redline

Project Name: EAA Project No:___ Date:

Carbonates

$$C = (W-R) \times 100$$

Crucible Number:		500
Wt. Of Crucible:	В	7-0-8534
Mass of Sample:	W	1.0000
Crucible + Insoluble Residue After Burn:	А	71.0673
Insoluble Residue: $A-B = R$	R	0.2139

C = % of Carbonates of Calcium and Magnesium
W = Mass Of Sample
R = Insoluble Residue

Carbonate Range:

Project No:_ Date:____

Carbonates

$$C = (W-R) \times 100$$

80.6

Crucible Number: Wt. of crucible: В Mass of Sample: W 1.0000 Crucible + Insoluble Residue After Burn: A 75,7410 Insoluble Residue: R 0,1945 A-B=R

C = % of Carbonates of Calcium and Magnesium

W = Mass of Sample

R = Insoluble Residue

Carbonate Range:

App A Annex G-1

To: 19134583323

P.6

Geological Investigations North of Redline

TC-ZE 5

Project Name: FAA

Project No:

Date: 2 2-1

Carbonates

734

$$C = (W-R) \times 100$$

Crucible Number:		C
Wt. of Crucible:	В	75,5465
Mass of Sample:	W	1.0000
Crucible + Insoluble Residue After Burn:	A	75,7410
Insoluble Residue: A-B = R	R	0.1945

C = % of Carbonates of Calcium and Magnesium

W = Mass Of Sample

R = Insoluble Residue

Carbonate Range:

•		
Talico-continuentes		

To:19134583323 P.12/42 Geological Investigations North of Redline

Project No: Date:_____

Carbonates

$$C = (W-R) \times 100$$

Crucible Number:	T	
Wt. of crucible:	В	72.7778
Mass of Sample:	W	1.0000
Crucible + Insoluble Residue After Burn:	А	72.8828
Insoluble Residue: A-B = R	R	0.1050

C = % of Carbonates of Calcium and Magnesium
W = Mass Of Sample

R = Insoluble Residue

Carbonate Range:

App A Annex G-1

FZR

Project Name: <u>EAA</u> Project No: Date:

P.17/42 Geological Investigations North of Redline 33.51

Carbonates

$$C = (W-R) \times 100$$

Crucible Number:		05
Wt. Of Crucible:	В	76.4745
Mass of Sample:	W	1.0000
Crucible + Insoluble Residue After Burn:	А	77.2415
Insoluble Residue: $A-B = R$	R	0.7670

C = % of Carbonates of Calcium and Magnesium
W = Mass_Of_Sample

R = Insoluble Residue

Carbonate Range:

Project Name: EAA Project No:_____ Date:

11.0

Geological Investigations North of Redline

Carbonates

$$C = (W-R) \times 100$$

Crucible Number:		500
Wt. of Crucible:	В	70.8534
Mass of Sample:	W	1.0000
Crucible + Insoluble Residue After Burn:	A	71.0673
Insoluble Residue: $A-B = R$	R	0.2139

C = % of Carbonates of Calcium and Magnesium
W = Mass_Of_Sample

R = Insoluble Residue

Carbonate Range:

EAA Reservoir 05 05 0013 106A Work Order No: 5 Carbonate Test Data

CP05	Ngquein-	SARS	2	chapterion	V	B
------	----------	------	---	------------	---	---

	Boring Number	Depth (feet)	Carbonate Content (%)
0283	CB-0174	100-105	71.7
"	CB-0174	110-115	75.5
11	CB-0174	115-120	75.9
11	CB-0174	125-130	77.7
//	CB-0174	140-145	53.0
//	CB-0174	150-155	68.3
h	CB-0174	160-165	67.2
11	CB-0174	165-170	41.2
1	CB-0174	180-185	37.9
11	CB-0174	185-190	53.6
11	CB-0174	195-200	36.6
11	CB-0174	200-205	23.9
-6283	CB-0174	205-210	30.5

Notes:

1 Carbonate content determined in general accordance with FDOT Standard.

EAA Reservoir 05 05 0013 106A Work Order No. 6 Carbonate Test Data

CPOS -EMARS-VB -

	Boring Number	Depth (feet)	Carbonate Content (%)
0282	CB 164	55060	61.8
0282	CB 164	70-75	72.3
0282	CB 164	130-135	32.8
0282	CB 164	180-185	54.8
0284	CB 182	70-75	78.8
0284	CB 182	90-95	72.1
0284	CB 182	140-145	55.4
0284	CB 182	175-180	48.2
0286	CB 205	60-65	77.1
0286	CB 205	75-80	72.0
0286	CB 205	140-145	58.2
0286	CB 205	160-165	61.6

Project	Name: EAA
Project	No:
Date:	

107

BA-01 5.5-70 Carbonates

$$C = (W-R) \times 100$$

87.4%

Crucible Number:		202
Wt. of Crucible:	В	18.3244
Mass of Sample:	W	1.6601
Crucible + Insoluble Residue After Burn:	А	18.4508
Insoluble Residue: $A-B = R$	R	0.1264

c = % of Carbonates of Calcium and Magnesium

W = Mass of Sample

R = Insoluble Residue

Carbonate Range:

Project	Name: EAA
Project	No:
Date:	

BA-01 28.5-30.0' Carbonates

$$C = (W-R) \times 100$$

29.1 %

Crucible Number:		C
Wt. of Crucible:	В	75.5444
Mass of Sample:	W	1.0000
Crucible + Insoluble Residue After Burn:	А	76.2531
Insoluble Residue: A-B = R	R	0.7087

C = % of Carbonates of Calcium and Magnesium

W = Mass Of Sample

R = Insoluble Residue

Carbonate Range:

Project	Name: EAA
Project	No:
Date:	

BA-01 43.5-45.0' Carbonates

$$C = \frac{(W-R)}{W} \times 100$$

Crucible Number:		203
Wt. Of Crucible:	В	17.2999
Mass of Sample:	W	1.0000
Crucible + Insoluble Residue After Burn:	A	18,1907
Insoluble Residue: $A-B = R$	R	0.8908

C = % of Carbonates of Calcium and Magnesium
W = Mass Of Sample

R = Insoluble Residue

Carbonate Range:

90% and up \pm 0.4% 50% and up $\pm 0.9\%$

P. 7729

July 2014

Project	Name: EAA
Project	No:
Date:	

BA.03 Carbonates

$$C = \frac{(W-R)}{W} \times 100$$

82.6 %

Crucible Number:	The same and the s	105
Wt. Of Crucible:	В	25,8748
Mass of Sample:	W	1,0000
Crucible + Insoluble Residue After Burn:	А	26.0486
Insoluble Residue: $A-B = R$	R	0.1738

C = % of Carbonates of Calcium and Magnesium
W = Mass_Of_Sample

R = Insoluble Residue

Carbonate Range:

Project	Name: EAA
Project	No:
Date:	

BA-03 29-30.5 Carbonates

$$C = \frac{(W-R)}{W} \times 100$$

405 %

Crucible Number:		100
Wt. Of Crucible:	В	26.1823
Mass of Sample:	W	1.0000
Crucible + Insoluble Residue After Burn:	Α	26.7771
Insoluble Residue: $A-B = R$	R	0.5948

C = % of Carbonates of Calcium and Magnesium

w = Mass of Sample

R = Insoluble Residue

Carbonate Range:

90% and up \pm 0.4% 50% and up $\pm 0.9\%$

P.9<29

Project	Name: EAA
Project	No:
Date:	

BA-03 43.5-645.0 Carbonates

$$C = \frac{(W-R)}{W} \times 100$$

37.3%

Crucible Number:		105
Wt. Of Crucible:	В	25.8741
Mass of Sample:	W	1.0000
Crucible + Insoluble Residue After Burn:	А	26.5013
Insoluble Residue: $A-B = R$	R	0.6272

C = % of Carbonates of Calcium and Magnesium
W = Mass Of Sample
R = Insoluble Residue

Carbonate Range:

Project	Name: EAA
Project	No:
Date:	

BA-04, Carbonates

$$C = \frac{(W-R)}{W} \times 100$$

87.7%

Crucible Number:		203
Wt. Of Crucible:	В	17.2991
Mass of Sample:	W	(.000.)
Crucible + Insoluble Residue After Burn:	А	17.4720
Insoluble Residue: $A-B = R$	R	0.1229

C = % of Carbonates of Calcium and Magnesium
W = Mass Of Sample

R = Insoluble Residue

Carbonate Range:

Project	Name: EAA
Project	No:
Date:	

BA.64 18.5' Carbonates

$$C = \frac{(W-R)}{W} \times 100$$

Crucible Number:		В
Wt. Of Crucible:	В	76.4770
Mass of Sample:	W	1.0001
Crucible + Insoluble Residue After Burn:	А	76.6500
Insoluble Residue: $A-B=R$	R	0.1730

C = % of Carbonates of Calcium and Magnesium

W = Mass of Sample

R = Insoluble Residue

Carbonate Range:

Geological Investigations North of Redline

Project	Name: EAA
Project	No:
Date:	

BA-04 33.5 Carbonates

$$C = \frac{(W-R)}{W} \times 100$$

31:4%

Crucible Number:		101	
Wt. Of Crucible:	В	25. 2995	
Mass of Sample:	W	1.0000	
Crucible + Insoluble Residue After Burn:	А	25.9857	
Insoluble Residue: $A-B = R$	R	0.6862	

C = % of Carbonates of Calcium and Magnesium

W = Mass Of Sample
R = Insoluble Residue

Carbonate Range:

Project	Name: EAA
Project	No:
Date:	

BA·05 28.5 Carbonates

$$C = (W-R) \times 100$$

36.8 %

Crucible Number:		100
Wt. Of Crucible:	В	26.1721
Mass of Sample:	W	1.0000
Crucible + Insoluble Residue After Burn:	А	26.8037
Insoluble Residue: $A-B = R$	R	0.6316

C = % of Carbonates of Calcium and Magnesium
W = Mass_Of_Sample

R = Insoluble Residue

Carbonate Range:

Project	Name: EAA
Project	No:
Date:	

BA-05 8.5' Carbonates

$$C = (W-R) \times 100$$

86.2

Crucible Number:		101
Wt. of Crucible:	В	25,3000
Mass of Sample:	W	1.0000
Crucible + Insoluble Residue After Burn:	Α	25.4383
Insoluble Residue: $A-B = R$	R	011383

c = % of Carbonates of Calcium and Magnesium

W = Mass Of Sample
R = Insoluble Residue

<u>Carbonate Range:</u>

Project	Name: EAA
Project	No:
Date:	

BA.05 38.5' Carbonates

$$C = (W-R) \times 100$$

%

Crucible Number:		i I
Wt. Of Crucible:	В	29.4254
Mass of Sample:	W	1.0000
Crucible + Insoluble Residue After Burn:	Α	30.1114
Insoluble Residue: $A-B = R$	R	0.6860

c = % of Carbonates of Calcium and Magnesium

W = Mass Of Sample
R = Insoluble Residue

Carbonate Range:

BA.06 6.0.7.5 Carbonates

$$C = \frac{(W-R)}{W} \times 100$$

Crucible Number:	100
Wt. of Crucible:	B 26.1653
Mass of Sample:	W 1.0000
Crucible + Insoluble Residue After Burn:	A 26.3184
Insoluble Residue: $A-B = R$	R 0.1531

App A Annex G-1-1429

C = % of Carbonates of Calcium and Magnesium

W = Mass Of Sample
R = Insoluble Residue

Carbonate Range:

Project	Name: EAA
Project	No:
Date:	

BA-06 Carbonates

$$C = (W-R) \times 100$$

27.6 %

Crucible Number:		C
Wt. Of Crucible:	В	75.5440
Mass of Sample:	W	1.0000
Crucible + Insoluble Residue After Burn:	А	76.2680
Insoluble Residue: A-B = R	R	0.7240

App A Annex G-1-1430

c = % of Carbonates of Calcium and Magnesium

W = Mass Of Sample
R = Insoluble Residue

Carbonate Range:

Project	Name: EAA
Project	No:
Mata	

BA-06 48.5.50.0 Carbonates

$$C = \frac{(W-R)}{W} \times 100$$

Crucible Number:		02	
Wt. Of Crucible:	В	25.6848	
Mass of Sample:	W	1.0000	
Crucible + Insoluble Residue After Burn:	А	26.3388	
Insoluble Residue: $A-B = R$	R	0.6540	

C = % of Carbonates of Calcium and Magnesium

W = Mass of Sample

R = Insoluble Residue

Carbonate Range:

Project	Name: EAA
Project	No:
Date:	

BA-07 60-7.5. Carbonates

$$C = \frac{(W-R)}{W} \times 100$$

83.0 %

Crucible Number:		204		
Wt. of Crucible:	В	17.8940		
Mass of Sample:	W	1.0000		
Crucible + Insoluble Residue After Burn:	А	18.0643		
Insoluble Residue: $A-B = R$	R	0.1703		

C = % of Carbonates of Calcium and Magnesium
W = Mass Of Sample
R = Insoluble Residue

Carbonate Range:

Project	Name: EAA
Project	No:
Date:	

B4.07 18.5.20.0' Carbonates

$$C = (W-R) \times 100$$

%

Crucible Number:		202
Wt. Of Crucible:	В	18.3399
Mass of Sample:	W	1.0000
Crucible + Insoluble Residue After Burn:	Α	184918
Insoluble Residue: $A-B = R$	R	0.1519

C = % of Carbonates of Calcium and Magnesium

W = Mass Of Sample R = Insoluble Residue

Carbonate Range:

Project	Name: EAA
Project	No:
Date:	

BA.07 38.5-40.0' Carbonates

$$C = (W-R) \times 100$$

%

Crucible Number:		102
Wt. Of Crucible:	В	25.6892
Mass of Sample:	W	1.0000
Crucible + Insoluble Residue After Burn:	А	26-4045
Insoluble Residue; A-B = R	R	0.7153

C = % of Carbonates of Calcium and Magnesium

W = Mass Of Sample
R = Insoluble Residue

Carbonate Range:

Project	Name: EAA
Project	No:
Date:	

BA-08 8.5-10.0' Carbonates

$$C = (W-R) \times 100$$

%

Crucible Number:	The second standard second standard second standard second standard second standard second second standard second	105
Wt. of Crucible:	В	25.8640
Mass of Sample:	W	1.0000
Crucible + Insoluble Residue After Burn:	А	26.0054
Insoluble Residue: A-B = R	R	0.144

C = % of Carbonates of Calcium and Magnesium

W = Mass Of Sample
R = Insoluble Residue

Carbonate Range:

Project	Name: EAA
Project	No:
Nato:	

BA-08 13.5 -15.0' Carbonates

$$C = \frac{(W-R)}{W} \times 100$$

83.7

Crucible Number:		11
Wt. Of Crucible:	В	29.4172
Mass of Sample:	W	1.0000
Crucible + Insoluble Residue After Burn:	А	29.5807
Insoluble Residue: $A-B = R$	R	0.1635

C = % of Carbonates of Calcium and Magnesium
W = Mass Of Sample
R = Insoluble Residue

Carbonate Range:

Project	Name: EHH
Project	No:
Date:	

BA-08 38.5.40.0 Carbonates

$$C = (W-R) \times 100$$

32.0 %

Crucible Number:		101
Wt. of Crucible:	В	25.2934
Mass of Sample:	W	1.0000
Crucible + Insoluble Residue After Burn:	A	25.9733
Insoluble Residue: $A-B = R$	R	0.32.01

C = % of Carbonates of Calcium and Magnesium
W = Mass Of Sample

R = Insoluble Residue

Carbonate Range:

Project	Name: EAA
Project	No:

BA-09 23.5-25.0

Carbonates

$$C = \frac{(W-R)}{W} \times 100$$

Crucible Number:		204
Wt. Of Crucible:	В	17.8684
Mass of Sample:	W	1.0001
Crucible + Insoluble Residue After Burn:	Α	18.0836
Insoluble Residue: A-B = R	R	0.2150

C = % of Carbonates of Calcium and Magnesium

W = Mass Of Sample
R = Insoluble Residue

Carbonate Range:

Project	Name: EAA
Project	No:
Data-	

BA.09 38.5.40.0 Carbonates

$$C = \frac{(W-R)}{W} \times 100$$

25.3 %

Crucible Number:	T
Wt. Of Crucible:	B 1,0001 K
Mass of Sample:	W 72,7716 W
Crucible + Insoluble Residue After Burn:	A 73.5187
Insoluble Residue: A-B = R	R 0.7471

C = % of Carbonates of Calcium and Magnesium

W = Mass Of Sample
R = Insoluble Residue

Carbonate Range:

Project Name: EAA	
Project No:	NODARSE
Date:	* ** ** * * * * * * * *

BA-10 13.5.15.0 Carbonates

$$C = (W-R) \times 100$$

%

ES, INC.

Crucible Number:		A
Wt. of crucible:	В	75,0438
Mass of Sample:	W	1.0000
Crucible + Insoluble Residue After Burn:	Α	75.2091
Insoluble Residue: $A-B = R$	R	0.1653

C = % of Carbonates of Calcium and Magnesium

W = Mass of Sample

R = Insoluble Residue

Carbonate Range:

Geological Investigations North of Redline

Project	Name: EHH
Project	No:
Date:	

BA-10 33.5.35.0 Carbonates

$$C = (W-R) \times 100$$

26.7 %

Crucible Number:		102
Wt. Of Crucible:	В	25.6924
Mass of Sample:	W	1.0000
Crucible + Insoluble Residue After Burn:	А	26.4250
Insoluble Residue: $A-B = R$	R	0,7326

c = % of Carbonates of Calcium and Magnesium

W = Mass of Sample
R = Insoluble Residue

Carbonate Range:

APPENDIX 5 LABORATORY TEST RESULTS OTHER TESTS

TRIAXIAL TEST RESULTS

Note: Material for triaxial tests on remolded samples was obtained from soil used in Test Cell construction.

-0283 -0283 EAA Reservoir 05 05 0013 106A Work Order No: 5 Corrosion Test Data

CP05-	EMARS-	VB	-1
der militaris de la granda de la companya de la comp		Telephone (1991)	management ?

Boring Number	Depth (feet)	Electrical Resisitivity	pH	Chlorides (ppm)	Sulfates (ppm)
14mmci		(0hm-cm)		(ppm)	(hhm)
CB-0174	5-10	8.2 x 1k	8.5	60	25
CB-0174	115-120	3.0 x 1k	8.3	60	Less than 5

Notes:

1 Corrosion Series determined in general accordance with FDOT Standards.

EAA Reservoir 05 05 0013 106A Work Order No: 6 Corrosion Test Data

Boring Number	Depth (feet)	Electrical Resisitivity (0hm-cm)	pH	Chlorides (ppm)	Sulfates (ppm)				
CB-0164	5-10	6.1 x 1k	8.9	90	60				
10 POT - EAARS - CB - 036/									

Notes:

1 Corrosion Series determined in general accordance with FDOT Standards.

Normal Stress, ksf

3	Sa	imple No.	1	2	3	
2	į	Water Content, Dry Density, pcf Saturation, Void Ratio Diameter, in. Height, in.	15.9 104.4 67.4 0.6508 2.84 6.05	16.2 107.4 74.0 0.6047 2.84 6.15	15.8 107.3 71.9 0.6066 2.84 6.83	
1	At Test	Water Content, Dry Density, pcf Saturation, Void Ratio Diameter, in. Height, in.	22.8 105.8 100.0 0.6304 2.83 6.02	21.7 107.8 100.0 0.6000 2.84 6.14	21.9 107.5 100.0 0.6044 2.84 6.83	
-	Str	ain rate, in./min.	0.05	0.05	0.05	NAMES OF THE PERSON OF THE PER
-	Bac	ck Pressure, ksf	0.0	0.0	0.0	
- CONTRACTOR OF THE PERSONS	Cel	l Pressure, ksf	0.8	1.2	2.0	
- December of the last of the	Fail. Stress, ksf		4.5	6.2	8.6	
004400000000000000000000000000000000000	Ult.	Stress, ksf				
and the second	σ_1	Failure, ksf	5.3	7.4	10.6	
and management than	σ3	Failure, ksf	0.8	1.2	2.0	

Type of Test:

Unconsolidated Undrained

Sample Type: remold

Description: Tan Slightly Clayey Silty Medium to

Fine SAND with Shell and Rock Fragments

Specific Gravity= 2.762

Remarks: sample moist cured 14 days

Client: Nodarse and Associates

Project: Material Testing-Nodarse

Sample Number: UU-95% 14 day cured

Proj. No.: 6738-05-4573

Date: 6-28-05

TRIAXIAL SHEAR TEST REPORT

MACTEC ENGINEERING AND CONSULTING, INC.

Reviewed By

Tested By: MC

Checked By:

Sukhwani

Tested By: MC Checked By:

App A Annex G-1

Geological Investigations North of Redline

TRIAXIAL COMPRESSION TEST

Unconsolidated Undrained

7/14/2005 9:00 AM

Date:

6-28-05

Client:

Nodarse and Associates

Project:

Material Testing-Nodarse

Project No.:

6738-05-4573

Sample Number:

UU-95% 14 day cured

Description:

Tan Slightly Clayey Silty Medium to Fine SAND with Shell and Rock Fragments

Remarks:

sample moist cured 14 days

LL=

Type of Sample:

remold

Specific Gravity=2.762

PL=

P|=

Test Method:

COE uniform strain

f man carmer our ment of the contract of the c				
P	arameter	s for Specimen No. 1		
Specimen Parameter	Initial	Saturated	Final	
Moisture content: Moist soil+tare, gms.	125.860		413.600	
Moisture content: Dry soil+tare, gms.	112.030		364.200	
Moisture content: Tare, gms.	24.930		50.800	
Moisture, %	15.9	22.8	15.8	
Moist specimen weight, gms.	1217.6			
Diameter, in.	2.84	2.83		
Area, in. ²	6.33	6.28		
Height, in.	6.05	6.02		
Net decrease in height, in.		0.03		
Wet Density, pcf	121.0	129.9		
Dry density, pcf	104.4	105.8		
Void ratio	0.6508	0.6304		
Saturation, %	67.4	100.0	NRSvija fridakrijski programa i politika i koja svija i ko	auto addicionalumentomo. A cristico (Clim CV no homin prigagen (Noblem in art 200 adulto incenti controllata por 1,12 m. sv.

Test Readings for Specimen No. 1

Primary load ring constant = .463 lbs. per input unit

Membrane modulus = 0.124105 kN/cm²

Membrane thickness = 0.02 cm

Cell pressure = 5.60 psi (0.81 ksf)

Back pressure = 0.00 psi (0.00 ksf)

Strain rate, in./min. = 0.05

Fail. Stress = 4.52 ksf at reading no. 27

۱pp	A Anı	nex G-1				Test Re	adings for S	SpeciGeolog	ical Inve	stigatio	ns North of Redlin	ie
	No.	Def. Dial in.	Load Dial	Load lbs.	Strain %	Deviator Stress ksf	Minor Princ. Stress ksf	Major Princ. Stress ksf	1:3 Ratio	P ksf	Q ksf	
	0	0.0000	0.0	0.0	0.0	0.00	0.81	0.81	1.00		0.81	
	1	0.0010	12.0	5.6	0.0	0.13	0.81	0.93	1.16		0.87	
	2	0.0050	65.0	30.1	0.1	0.69	0.81	1.50	1.85		1.15	
	3	0.0100	95.0	44.0	0.2	1.01	0.81	1.81	2.25		1.31	
	4	0.0150	124.0	57.4	0.2	1.31	0.81	2.12	2.63		1.46	
	5	0.0200	145.0	67.1	0.3	1.53	0.81	2.34	2.90		1.57	
	6	0.0250	165.0	76.4	0.4	1.74	0.81	2.55	3.16		1.68	
	7	0.0300	183.0	84.7	0.5	1.93	0.81	2.74	3.40		1.77	
	8	0.0350	195.0	90.3	0.6	2.06	0.81	2.86	3.55		1.84	
	9	0.0400	208.0	96.3	0.7	2.19	0.81	3.00	3.72		1.90	
	10	0.0450	222.0	102.8	0.7	2.34	0.81	3.14	3.90		1.98	
	11	0.0500	233.0	107.9	0.8	2.45	0.81	3.26	4.04		2.03	
	12	0.0750	280.0	129.6	1.2	2.93	0.81	3.74	4.64		2.27	
	13	0.1000	303.0	140.3	1.7	3.16	0.81	3.97	4.92		2.39	
	14	0.1250	327.0	151.4	2.1	3.40	0.81	4.20	5.21		2.51	
	15	0.1500	347.0	160.7	2.5	3.59	0.81	4.40	5.45		2.60	
	16	0.1750	359.0	166.2	2.9	3.70	0.81	4.51	5.59		2.66	
	17	0.2000	371.0	171.8	3.3	3.81	0.81	4.61	5.72		2.71	
	18	0.2500	389.0	180.1	4.1	3.96	0.81	4.76	5.91		2.78	
	19	0.3000	401.0	185.7	5.0	4.04	0.81	4.85	6.01		2.83	
	20	0.4000	415.0	192.1	6.6	4.11	0.81	4.92	6.10		2.86	
	21	0.5000	427.0	197.7	8.3	4.16	0.81	4.96	6.15		2.88	
	22	0.6000	445.0	206.0	10.0	4.25	0.81	5.06	6.27		2.93	
	23	0.7000	460.0	213.0	11.6	4.31	0.81	5.12	6.35		2.96	
	24	0.8000	475.0	219.9	13.3	4.37	0.81	5.18	6.42		2.99	
	25	0.9000	497.0	230.1	14.9	4.49	0.81	5.29	6.56		3.05	
	26	1.0000	509.0	235.7	16.6	4.51	0.81	5.31	6.59		3.06	
	27	1.1000	521.0	241.2	18.3	4.52	0.81	5.33	6.60		3.07	

App A Annex G-1	arameters	for Specimen No. 2	al Investigations Nortl	n of Redline
Specimen Parameter	Initial	Saturated	Final	
Moisture content: Moist soil+tare, gms.	. 128.130		1393.600	
Moisture content: Dry soil+tare, gms.	114.500		1212.300	
Moisture content: Tare, gms.	30.350		116.100	
Moisture, %	16.2	21.7	16.5	
Moist specimen weight, gms.	1276.8			
Diameter, in.	2.84	2.84		
Area, in.²	6.33	6.32		
Height, in.	6.15	6.14		
Net decrease in height, in.		0.01		
Wet Density, pcf	124.9	131.2		
Dry density, pcf	107.4	107.8		
Void ratio	0.6047	0.6000		
Saturation, %	74.0	100.0		

Test Readings for Specimen No. 2

Primary load ring constant = .463 lbs. per input unit

Membrane modulus = 0.124105 kN/cm^2

Membrane thickness = 0.02 cm

Cell pressure = 8.30 psi (1.20 ksf)

Back pressure = 0.00 psi (0.00 ksf)

Strain rate, in./min. = 0.05

Fail. Stress = 6.16 ksf at reading no. 25

No.	Def. Dial in.	Load Dial	Load lbs.	Strain %	Deviator Stress ksf	Minor Princ. Stress ksf	Major Princ. Stress ksf	1:3 Ratio	P ksf	Q ksf	
0	0.0000	0.0	0.0	0.0	0.00	1.20	1.20	1.00		1.20	
1	0.0010	33.0	15.3	0.0	0.35	1.20	1.54	1.29		1.37	
2	0.0050	77.0	35.7	0.1	0.81	1.20	2.01	1.68		1.60	
3	0.0100	127.0	58.8	0.2	1.34	1.20	2.53	2.12		1.86	
4	0.0150	164.0	75.9	0.2	1.73	1.20	2.92	2.44		2.06	
5	0.0200	193.0	89.4	0.3	2.03	1.20	3.22	2.70		2.21	
6	0.0250	220.0	101.9	0.4	2.31	1.20	3.51	2.93		2.35	
7	0.0300	242.0	112.0	0.5	2.54	1.20	3.73	3.12		2.46	
8	0.0350	262.0	121.3	0.6	2.75	1.20	3.94	3.30		2.57	
9	0.0400	287.0	132.9	0.7	3.01	1.20	4.20	3.52		2.70	
10	0.0450	298.0	138.0	0.7	3.12	1.20	4.31	3.61		2.75	
11	0.0500	310.0	143.5	0.8	3.24	1.20	4.44	3.71		2.82	
12	0.0750	380.0	175.9	1.2	3.96	1.20	5.15	4.31		3.17	
13	0.1000	426.0	197.2	1.6	4.42	1.20	5.61	4.70		3.40	
14	0.1250	460.0	213.0	2.0	4.75	1.20	5.95	4.98		3.57	
15	0.1500	497.0	230.1	2.4	5.11	1.20	6.31	5.28		3.75	
16	0.2000	534.0	247.2	3.3	5.45	1.20	6.64	5.56		3.92	
17	0.2500	558.0	258.4	4.1	5.64	1.20	6.84	5.72		4.02	
18	0.3000	575.0	266.2	4.9	5.77	1.20	6.96	5.83		4.08	
19	0.4000	592.0	274.1	6.5	5.84	1.20	7.03	5.88		4.11	
20	0.5000	619.0	286.6	8.1	6.00	1.20	7.19	6.02		4.19	
21	0.6000	631.0	292.2	9.8	6.00	1.20	7.20	6.02		4.20	
22	0.7000	653.0	302.3	11.4	6.10	1.20	7.30	6.11		4.25	
23	0.8000	667.0	308.8	13.0	6.12	1.20	7.31	6.12		4.25	
24	0.9000	681.0	315.3	14.6	6.13	1.20	7.32	6.13		4.26	
				_ MAC	TEC En	gineering a	nd Consulti	ng, Inc			

pp	Test Readings for Specimen No. 2													
	No.	Def. Dial in.	Load Dial	Load lbs.	Strain %	Deviator Stress ksf	Minor Princ. Stress ksf	Major Princ. Stress ksf	1:3 Ratio	p ksf	Q ksf			
	25	1.0000	698.0	323.2	16.3	6.16	1.20	7.36	6.16		4.28			
	26	1.1000	708.0	327.8	17.9	6.13	1.20	7.32	6.13		4.26			

P	arameters	for Specimen No	.3
Specimen Parameter	Initial	Saturated	Final
Moisture content: Moist soil+tare, gms.	122.870		333.740
Moisture content: Dry soil+tare, gms.	110.280		294.900
Moisture content: Tare, gms.	30.550		52.160
Moisture, %	15.8	21.9	16.0
Moist specimen weight, gms.	1411.4		
Diameter, in.	2.84	2.84	
Area, in. ²	6.33	6.33	
Height, in.	6.83	6.83	
Net decrease in height, in.		0.00	
Wet Density, pcf	124.3	131.0	
Dry density, pcf	107.3	107.5	
Void ratio	0.6066	0.6044	
Saturation, %	71.9	100.0	

Test Readings for Specimen No. 3

Primary load ring constant = .463 lbs. per input unit

Membrane modulus = 0.124105 kN/cm^2

Membrane thickness = 0.02 cm

Cell pressure = 13.90 psi (2.00 ksf)

Back pressure = 0.00 psi (0.00 ksf)

Strain rate, in./min. = 0.05

Fail. Stress = 8.58 ksf at reading no. 24

No.	Def. Dial in.	Load Dial	Load lbs.	Strain %	Deviator Stress ksf	Minor Princ. Stress ksf	Major Princ. Stress ksf	1:3 Ratio	P ksf	Q ksf	
0	0.0000	0.0	0.0	0.0	0.00	2.00	2.00	1.00		2.00	
1	0.0010	27.0	12.5	0.0	0.28	2.00	2.29	1.14		2.14	
2	0.0050	78.0	36.1	0.1	0.82	2.00	2.82	1.41		2.41	
3	0.0100	146.0	67.6	0.1	1.54	2.00	3.54	1.77		2.77	
4	0.0150	192.0	88.9	0.2	2.02	2.00	4.02	2.01		3.01	
5	0.0200	233.0	107.9	0.3	2.45	2.00	4.45	2.22		3.23	
6	0.0250	265.0	122.7	0.4	2.78	2.00	4.78	2.39		3.39	
7	0.0300	295.0	136.6	0.4	3.09	2.00	5.10	2.55		3.55	
8	0.0350	323.0	149.5	0.5	3.39	2.00	5.39	2.69		3.69	
9	0.0400	347.0	160.7	0.6	3.63	2.00	5.64	2.82		3.82	
10	0.0450	368.0	170.4	0.7	3.85	2.00	5.85	2.92		3.93	
11	0.0500	393.0	182.0	0.7	4.11	2.00	6.11	3.05		4.06	
12	0.0750	503.0	232.9	1.1	5.24	2.00	7.24	3.62		4.62	
13	0.1000	553.0	256.0	1.5	5.74	2.00	7.74	3.87		4.87	
14	0.1250	609.0	282.0	1.8	6.30	2.00	8.30	4.15		5.15	
15	0.1500	655.0	303.3	2.2	6.75	2.00	8.75	4.37		5.38	
16	0.1750	693.0	320.9	2.6	7.11	2.00	9.11	4.55		5.56	
17	0.2000	724.0	335.2	2.9	7.40	2.00	9.40	4.70		5.70	
18	0.2500	768.0	355.6	3.7	7.79	2.00	9.80	4.89		5.90	
				_ MAC	TEC En	gineering a	nd Consulti	ng, Inc	* 1507/000		

App A Annex G-1 Test Readings for Specimen No. 3													
No.	Def. Dial in.	Load Dial	Load lbs.	Strain %	Deviator Stress ksf	Minor Princ. Stress ksf	Major Princ. Stress ksf	1:3 Ratio	p ksf	Q ksf			
19	0.3000	802.0	371.3	4.4	8.08	2.00	10.08	5.04		6.04			
20	0.3500	832.0	385.2	5.1	8.32	2.00	10.32	5.15		6.16			
21	0.4000	852.0	394.5	5.9	8.45	2.00	10.45	5.22		6.23			
22	0.5000	878.0	406.5	7.3	8.57	2.00	10.57	5.28		6.29			
23	0.6000	890.0	412.1	8.8	8.55	2.00	10.55	5.27		6.28			
24	0.7000	908.0	420.4	10.3	8.58	2.00	10.59	5.29		6.29			
25	0.8000	917.0	424.6	11.7	8.53	2.00	10.53	5.26		6.27			
26	0.9000	927.0	429.2	13.2	8.48	2.00	10.48	5.24		6.24			
27	1.0000	940.0	435.2	14.6	8.45	2.00	10.45	5.22		6.23			
28	1.1000	959.0	444.0	16.1	8.47	2.00	10.48	5.23		6.24			

	ıty		Ţ	1 A 13.9		2 A 5.6	pesn	3 A 8.3	4	w	Ø	nsed			direct	2	en	*	w	
	maximum density 115.5	% compactio	197 6 To 1881	90.3		88.5	91.4 not used	89.5	89.5	90.4	9.06	92.2 not used			95.5	92.6	94.8	94.8	94	
	5	sample dry % density co	112.67026	1		102.24443	105.60068	103.35942	103.34316	104.43123	104.67476	106.52016			110.25697	110.41974	109.5015	109.50206	108.64164	-
2-05	25.2 cm 9.92126 in	% moistire	Separate Contraction of the Cont			16.24	16.29	16.29	3 16.15	16.31	16.22	16.22			15.98	3 15.88	16.20	5 15.79	8 16.18	2000
tested 7-12-05	6.334702 Length	\$	-	10.0000	·	24.58	10.67	3	8 1, 92,03	9	5 20.0	5 30.0			3 30.35	24.93	50.35	B Talking Ris	60	
5	6.33470	dry wt. w/		5 101.81		A.000 Y	F 51 - 106 3	(100 s	124 28	11 10 08	10,000	31 7 84.65			18 102.63	112.03		8713 411128	66 (11/27.83	大学 (1) 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1
cast 6-28-05	2.84 Area	wet wt w/		113.5		8	8 122.11	2 122 1	0	5 116.84	9:5	85.57	managaman managa 1949 A		9	0 125.86	2 128.18	8 11122.87	137,56	March Street or March Street
-4576-02	2.84	sample wet density (lb/cuft)	131.0	121.2		118.8	122.8	120.2	120.0	121.5	121.6	123.8	,		127.9	128.0	127.2	126.8	126.2	
6738-05-457		sample s	0.0225	0.0251		0.0263	0.0267	0.0222	0.0248	0.0255	0.0247	0.0244			0.0212	0.0221	0.0224	0.0248	0.0229	
Nodarse	766.2 Tube Diameter (in)	sample length (in)	6.14	6.85		7.17	7.28	90.9	6.77	6.97	6.73	6.65	man and section of the section of th		5.79	6.02	6.10	6.77	6.26	200
ens	766.2	distance to sample (cm)		8 4 1 1 8		21		9.8		0	0	2 B.3		and deposit and the second second	1	3 8.9	5 97	5	0 9 9	
14 day cured specimens	"Should proof proof. " Common to the common	weight sample (1b)	2.95	3.04		3.12	3.28	78 2.67	2.98	3.10	3.00	3.02		question supplies sup	2.71	2.83	2.85	3,15	80 2.90	
14 day 0.	Tube Weight	weight w/ sample and tube	2104.2			2182.2	2253 5	1978		21736					1998.8		1,067	2193.9	2000	

Normal Stress, ksf

	Sa	mple No.	1	2	3	
	Titi.	Water Content, Dry Density, pcf Saturation, Void Ratio Diameter, in.	16.0 108.3 74.5 0.5925 2.84	16.3 108.0 75.5 0.5972 2.84	0.6030 2.84	
?	At Test	Height, in. Water Content, Dry Density, pcf Saturation, Void Ratio Diameter, in. Height, in.	20.9 109.4 100.0 0.5763 2.83 5.85	6.15 21.3 108.5 100.0 0.5886 2.83 6.14	100.0 0.5770	
	Str	ain rate, in./min.	0.05	0.05	0.05	
	Ba	ck Pressure, ksf	0.0	0.0	0.0	
	Ce	ll Pressure, ksf	0.8	1.2	2.0	
-	Fai	l. Stress, ksf	5.2	6.8	9.1	
-	Ult	. Stress, ksf				
-	σ_1	Failure, ksf	6.0	8.0	11.1	
-	σ_3	Failure, ksf	0.8	1.2	2.0	

Type of Test:

Unconsolidated Undrained

Sample Type: remold

Description: Tan Slightly Clayey Silty Medium to

Fine SAND with Shell and Rock Fragments

Specific Gravity= 2.762

Remarks: Samples moist cured 14 days

Client: Nodarse and Associates

Project: Material Testing-Nodarse

Sample Number: UU-95% 14 day cured

Proj. No.: 6738-05-4573

Date: 6-28-05

TRIAXIAL SHEAR TEST REPORT

MACTEC ENGINEERING AND CONSULTING, INC.

Reviewed By

Tested By: MC

Checked By:

CEPP Final PIR and EIS

July 2014

Tested By: MC Checked By:

App A Annex G-1

Geological Investigations North of Redline

TRIAXIAL COMPRESSION TEST

Unconsolidated Undrained

7/14/2005 9:03 AM

Date:

6-28-05

Client: Project: Nodarse and Associates
Material Testing-Nodarse

Project No.:

6738-05-4573

Sample Number:

UU-95% 14 day cured

Description:

Tan Slightly Clayey Silty Medium to Fine SAND with Shell and Rock Fragments

Remarks:

Samples moist cured 14 days

Type of Sample:

remold

Specific Gravity=2.762

LL=

PL=

PI=

Test Method:

COE uniform strain

				CONTRACTOR OF THE PROPERTY OF
P	arameters	for Specimen No. 1		5.0
Specimen Parameter	Initial	Saturated	Final	
Moisture content: Moist soil+tare, gms.	114.180		409.300	
Moisture content: Dry soil+tare, gms.	102.630		360.550	
Moisture content: Tare, gms.	30.350		52.330	
Moisture, %	16.0	20.9	15.8	
Moist specimen weight, gms.	1225.7			
Diameter, in.	2.84	2.83		
Area, in.²	6.33	6.29		
Height, in.	5.87	5.85		
Net decrease in height, in.		0.02		
Wet Density, pcf	125.6	132.2		
Dry density, pcf	108.3	109.4		
Void ratio	0.5925	0.5763		
Saturation, %	74.5	100.0		

Test Readings for Specimen No. 1

Primary load ring constant = .463 lbs. per input unit

Membrane modulus = 0.124105 kN/cm²

Membrane thickness = 0.02 cm

Cell pressure = 5.60 psi (0.81 ksf)

Back pressure = 0.00 psi (0.00 ksf)

Strain rate, in./min. = 0.05

Fail. Stress = 5.23 ksf at reading no. 28

o. 0	Def. Dial in.					Geological Investigations North of Redline Test Readings for Specimen No. 1												
		Load Dial	Load lbs.	Strain %	Deviator Stress ksf	Minor Princ. Stress ksf	Major Princ. Stress ksf	1:3 Ratio	P ksf	Q ksf								
No.	0.0000	0.0	0.0	0.0	0.00	0.81	0.81	1.00		0.81								
	0.0010	31.0	14.4	0.0	0.33	0.81	1.13	1.41		0.97								
2	0.0050	78.0	36.1	0.1	0.83	0.81	1.63	2.02		1.22								
3	0.0100	121.0	56.0	0.2	1.28	0.81	2.09	2.59		1.45								
4	0.0150	148.0	68.5	0.3	1.56	0.81	2.37	2.94		1.59								
5	0.0200	172.0	79.6	0.3	1.82	0.81	2.62	3.25		1.71								
6	0.0250	193.0	89.4	0.4	2.04	0.81	2.84	3.53		1.82								
7	0.0300	210.0	97.2	0.5	2.21	0.81	3.02	3.75		1.91								
8	0.0350	227.0	105.1	0.6	2.39	0.81	3.20	3.97		2.00								
9	0.0400	243.0	112.5	0.7	2.56	0.81	3.36	4.17		2.09								
0	0.0450	256.0	118.5	0.8	2.69	0.81	3.50	4.34		2.15								
1	0.0500	268.0	124.1	0.9	2.82	0.81	3.62	4.49		2.21								
2	0.0750	312.0	144.5	1.3	3.26	0.81	4.07	5.05		2.44								
3	0.1000	352.0	163.0	1.7	3.67	0.81	4.47	5.55		2.64								
4	0.1250	374.0	173.2	2.1	3.88	0.81	4.69	5.81		2.75								
5	0.1500	397.0	183.8	2.6	4.10	0.81	4.91	6.08		2.86								
5	0.1750	410.0	189.8	3.0	4.21	0.81	5.02	6.23		2.91								
7	0.2000	425.0	196.8	3.4	4.35	0.81	5.16	6.39		2.98								
3	0.2500	443.0	205.1	4.3	4.49	0.81	5.30	6.57		3.05								
)	0.3000	455.0	210.7	5.1	4.57	0.81	5.38	6.67		3.09								
)	0.3500	473.0	219.0	6.0	4.71	0.81	5.52	6.84		3.16								
l	0.4000	486.0	225.0	6.8	4.80	0.81	5.60	6.95		3.21								
2	0.5000	500.0	231.5	8.5	4.85	0.81	5.65	7.01		3.23								
}	0.6000	512.0	237.1	10.3	4.87	0.81	5.68	7.04		3.24								
	0.7000	537.0	248.6	12.0	5.01	0.81	5.82	7.21		3.31								
,	0.8000	552.0	255.6	13.7	5.05	0.81	5.86	7.26		3.33								
)	0.9000	577.0	267.2	15.4	5.17	0.81	5.98	7.42		3.39								
7	1.0000	591.0	273.6	17.1	5.19	0.81	6.00	7.44		3.40								
	1.1000	608.0	281.5	18.8	5.23	0.81	6.04	7.49		3.42								

	CONTRACTOR OF THE PERSON OF TH	•											
App A Annex G-1 Geological Investigations North of Redline Parameters for Specimen No. 2													
Specimen Parameter	Initial	Saturated	Final										
Moisture content: Moist soil+tare, gms.	106.780		858.900										
Moisture content: Dry soil+tare, gms.	96.220		771.000										
Moisture content: Tare, gms.	31.520		230.300										
Moisture, %	16.3	21.3	16.3										
Moist specimen weight, gms.	1284.2												
Diameter, in.	2.84	2.83											
Area, in.²	6.33	6.31											
Height, in.	6.15	6.14											
Net decrease in height, in.		0.01											
Wet Density, pcf	125.6	131.7											
Dry density, pcf	108.0	108.5											
Void ratio	0.5972	0.5886											
Saturation, %	75.5	100.0											

Test Readings for Specimen No. 2

Primary load ring constant = .463 lbs. per input unit

Membrane modulus = 0.124105 kN/cm^2

Membrane thickness = 0.02 cm

Cell pressure = 8.30 psi (1.20 ksf)

Back pressure = 0.00 psi (0.00 ksf)

Strain rate, in./min. = 0.05

Fail. Stress = 6.81 ksf at reading no. 23

No.	Def. Dial in.	Load Dial	Load lbs.	Strain %	Deviator Stress ksf	Minor Princ. Stress ksf	Major Princ. Stress ksf	1:3 Ratio	P ksf	Q ksf
0	0.0000	0.0	0.0	0.0	0.00	1.20	1.20	1.00		1.20
1	0.0010	37.0	17.1	0.0	0.39	1.20	1.59	1.33		1.39
2	0.0050	62.0	28.7	0.1	0.65	1.20	1.85	1.55		1.52
3	0.0100	90.0	41.7	0.2	0.95	1.20	2.14	1.79		1.67
4	0.0150	115.0	53.2	0.2	1.21	1.20	2.41	2.01		1.80
5	0.0200	141.0	65.3	0.3	1.48	1.20	2.68	2.24		1.94
6	0.0250	168.0	77.8	0.4	1.77	1.20	2.96	2.48		2.08
7	0.0300	195.0	90.3	0.5	2.05	1.20	3.24	2.71		2.22
8	0.0350	220.0	101.9	0.6	2.31	1.20	3.51	2.93		2.35
9	0.0400	245.0	113.4	0.7	2.57	1.20	3.77	3.15		2.48
10	0.0450	270.0	125.0	0.7	2.83	1.20	4.03	3.37		2.61
11	0.0500	296.0	137.0	0.8	3.10	1.20	4.30	3.59		2.75
12	0.0750	395.0	182.9	1.2	4.12	1.20	5.32	4.45		3.26
13	0.1000	467.0	216.2	1.6	4.85	1.20	6.05	5.06		3.62
14	0.1250	520.0	240.8	2.0	5.38	1.20	6.58	5.50		3.89
15	0.1500	555.0	257.0	2.4	5.72	1.20	6.91	5.79		4.05
16	0.1750	584.0	270.4	2.9	5.99	1.20	7.19	6.01		4.19
17	0.2000	608.0	281.5	3.3	6.21	1.20	7.41	6.20		4.30
18	0.2500	644.0	298.2	4.1	6.53	1.20	7.72	6.46		4.46
19	0.3000	660.0	305.6	4.9	6.63	1.20	7.83	6.55		4.51
20	0.3500	672.0	311.1	5.7	6.69	1.20	7.89	6.60		4.54
21	0.4000	685.0	317.2	6.5	6.76	1.20	7.96	6.66		4.58
22	0.5000	697.0	322.7	8.1	6.76	1.20	7.96	6.66		4.58
23	0.6000	715.0	331.0	9.8	6.81	1.20	8.01	6.70		4.60
24	0.7000	724.0	335.2	11.4	6.78	1.20	7.97	6.67		4.58
				_ MAC	TEC En	gineering a	nd Consult	ing, Inc)	

A AI	mex G-1				Test Re	adings for S	Specimen N	ogicai in	vestigati	ons north of R	eanne
No.	Def. Dial in.	Load Dial	Load lbs.	Strain %	Deviator Stress ksf	Minor Princ. Stress ksf	Major Princ. Stress ksf	1:3 Ratio	p ksf	Q ksf	
25	0.8000	731.0	338.5	13.0	6.72	1.20	7.91	6.62		4.55	
26	0.9000	743.0	344.0	14.7	6.70	1.20	7.89	6.60		4.54	
27	1.0000	755.0	349.6	16.3	6.68	1.20	7.87	6.59		4.53	
28	1.1000	764.0	353.7	17.9	6.62	1.20	7.82	6.54		4.51	

P. Cristian P.	arameters	for Specimen N	6.3
Specimen Parameter	Initial	Saturated	Final
Moisture content: Moist soil+tare, gms.	137.560		345.130
Moisture content: Dry soil+tare, gms.	122.830		304.400
Moisture content: Tare, gms.	31.780		49.860
Moisture, %	16.2	20.9	16.0
Moist specimen weight, gms.	1305.0		
Diameter, in.	2.84	2.82	
Area, in. ²	6.33	6.27	
Height, in.	6.28	6.25	
Net decrease in height, in.		0.03	
Wet Density, pcf	125.0	132.2	
Dry density, pcf	107.6	109.3	
Void ratio	0.6030	0.5770	
Saturation, %	74.1	100.0	
and the second of the second o	t Reading	s for Specimen	No.3

Primary load ring constant = .463 lbs. per input unit

Membrane modulus = 0.124105 kN/cm^2

Membrane thickness = 0.02 cm

Cell pressure = 13.90 psi (2.00 ksf)

Back pressure = 0.00 psi (0.00 ksf)

Strain rate, in./min. = 0.05

Fail. Stress = 9.09 ksf at reading no. 24

No.	Def. Dial in.	Load Dial	Load lbs.	Strain %	Deviator Stress ksf	Minor Princ. Stress ksf	Major Princ. Stress ksf	1:3 Ratio	P ksf	Q ksf	
0	0.0000	0.0	0.0	0.0	0.00	2.00	2.00	1.00		2.00	
7	0.0010	32.0	14.8	0.0	0.34	2.00	2.34	1.17		2.17	
2	0.0050	118.0	54.6	0.1	1.25	2.00	3.26	1.63		2.63	
3	0.0100	188.0	87.0	0.2	2.00	2.00	4.00	2.00		3.00	
4	0.0150	242.0	112.0	0.2	2.57	2.00	4.57	2.28		3.29	
5	0.0200	281.0	130.1	0.3	2.98	2.00	4.98	2.49		3.49	
6	0.0250	313.0	144.9	0.4	3.32	2.00	5.32	2.66		3.66	
7	0.0300	348.0	161.1	0.5	3.68	2.00	5.69	2.84		3.84	
8	0.0350	375.0	173.6	0.6	3.97	2.00	5.97	2.98		3.99	
9	0.0400	403.0	186.6	0.6	4.26	2.00	6.26	3.13		4.13	
10	0.0450	427.0	197.7	0.7	4.51	2.00	6.51	3.25		4.26	
11	0.0500	446.0	206.5	0.8	4.71	2.00	6.71	3.35		4.36	
12	0.0750	538.0	249.1	1.2	5.66	2.00	7.66	3.83		4.83	
13	0.1000	605.0	280.1	1.6	6.33	2.00	8.34	4.16		5.17	
14	0.1250	645.0	298.6	2.0	6.73	2.00	8.73	4.36		5.36	
15	0.1500	690.0	319.5	2.4	7.17	2.00	9.17	4.58		5.58	
16	0.1750	737.0	341.2	2.8	7.62	2.00	9.62	4.81		5.81	

App A An	inex G-1				Test Re	adings for S	Specimen N	ogical Inv	estigatio	ons North of R	edline
No.	Def. Dial in.	Load Dial	Load lbs.	Strain %	Deviator Stress ksf	Minor Princ. Stress ksf	Major Princ. Stress ksf	1:3 Ratio	P ksf	Q ksf	
17	0.2000	777.0	359.8	3.2	8.00	2.00	10.00	5.00		6.00	
18	0.3000	821.0	380.1	4.8	8.32	2.00	10.32	5.15		6.16	
19	0.3500	858.0	397.3	5.6	8.62	2.00	10.62	5.31		6.31	
20	0.4000	882.0	408.4	6.4	8.78	2.00	10.79	5.39		6.39	
21	0.5000	907.0	419.9	8.0	8.88	2.00	10.88	5.44		6.44	
22	0.6000	934.0	432.4	9.6	8.98	2.00	10.98	5.49		6.49	
23	0.7000	951.0	440.3	11.2	8.98	2.00	10.99	5.49		6.49	
24	0.8000	980.0	453.7	12.8	9.09	2.00	11.09	5.54		6.55	
25	0.9000	995.0	460.7	14.4	9.06	2.00	11.06	5.53		6.53	
26	1.0000	1008.0	466.7	16.0	9.01	2.00	11.01	5.50		6.51	
27	1 1000	1023.0	473 6	176	8 97	2.00	10.97	5 48		6.49	

Sample No.

16.2 16.3 16.3 Water Content, Dry Density, pcf 103.5 100.7 101.2 63.8 Saturation, 67.4 63.2 Void Ratio 0.7122 0.7043 0.6653 Diameter, in. 2.84 2.84 2.84 7.04 Height, in. 6.19 6.89 Water Content, 22.7 25.2 24.9 105.9 Dry Density, pcf 101.7 102.2 Saturation, 100.0 100.0 100.0 0.62780.6957 0.6866 Void Ratio Ž 2.82 2.83 2.83 Diameter, in. 6.99 6.17 6.87 Height, in. Strain rate, in./min. 0.05 0.05 0.05 Back Pressure, ksf 0.00 0.00 0.00 Cell Pressure, ksf 0.81 1.20 2.00 Fail. Stress, ksf 3.32 4.80 6.53 Ult. Stress, ksf σ₁ Failure, ksf 4.13 6.00 8.53 0.81 1.20 2.00 σ₃ Failure, ksf

1

2

3

Type of Test:

Unconsolidated Undrained Sample Type: Remolded

Description: Tan Slightly Clayey Silty Medium to Fine SAND with Shell and Rock Fragments

Specific Gravity= 2.762

Remarks: Specimen cured 14 days after molding.

Client: Nodarse and Associates

Project: Material Testing-Nodarse

Sample Number: UU-90% 14 day cured

Proj. No.: 6738-05-4573

Date: 7/12/05

TRIAXIAL SHEAR TEST REPORT

MACTEC ENGINEERING AND CONSULTING, INC.

Reviewed By

Tested By: MC

Checked By: LAND

Sukhwani

Tested By: MC Checked By:

App A Annex G-1

Geological Investigations North of Redline

TRIAXIAL COMPRESSION TEST

Unconsolidated Undrained

7/14/2005

8:57 AM

Date:

7/12/05

Client:

Nodarse and Associates

Project:

Material Testing-Nodarse

Project No.:

6738-05-4573

Sample Number:

UU-90% 14 day cured

Description:

Tan Slightly Clayey Silty Medium to Fine SAND with Shell and Rock Fragments

Remarks:

Specimen cured 14 days after molding.

Type of Sample:

Remolded

Specific Gravity=2.762

LL=

PL=

PI=

Test Method:

COE uniform strain

		and the second section of the section of	
P	arameter	s for Specimen N	lo. 1
Specimen Parameter	Initial	Saturated	Final
Moisture content: Moist soil+tare, gms.	112.710		1524.300
Moisture content: Dry soil+tare, gms.	100.400		1328.800
Moisture content: Tare, gms.	24.580		115.390
Moisture, %	16.2	22.7	16.1
Moist specimen weight, gms.	1408.9		
Diameter, in.	2.84	2.82	
Area, in. ²	6.33	6.24	
Height, in.	7.04	6.99	
Net decrease in height, in.		0.05	
Wet Density, pcf	120.4	130.0	
Dry density, pcf	103.5	105.9	
Void ratio	0.6653	0.6278	
Saturation, %	67.4	100.0	

Test Readings for Specimen No. 1

Primary load ring constant = .463 lbs. per input unit

Membrane modulus = 0.124105 kN/cm²

Membrane thickness = 0.02 cm

Cell pressure = 5.60 psi (0.81 ksf)

Back pressure = 0.00 psi (0.00 ksf)

Strain rate, in./min. = 0.05

Fail. Stress = 3.32 ksf at reading no. 28

				o enanciaran en il aria santa (DA)					ana an		
Арр А А	nnex G-1	Maria September 1			Test Re	adinas for S	specim Geol	ogical In	vestigat	ions North of R	edline
No.	Def. Dial in.	Load Dial	Load lbs.	Strain %			Major Princ. Stress ksf	1:3 Ratio	P ksf	Q ksf	
0	0.0000	0.0	0.0	0.0	0.00	0.81	0.81	1.00		0.81	
1	0.0010	20.0	9.3	0.0	0.21	0.81	1.02	1.26		0.91	
2	0.0050	56.0	25.9	0.1	0.60	0.81	1.40	1.74		1.11	
3	0.0100	93.0	43.1	0.1	0.99	0.81	1.80	2.23		1.30	
4	0.0150	107.0	49.5	0.2	1.14	0.81	1.95	2.41		1.38	
5	0.0200	130.0	60.2	0.3	1.39	0.81	2.19	2.72		1.50	
6	0.0250	142.0	65.7	0.4	1.51	0.81	2.32	2.87		1.56	
7	0.0300	153.0	70.8	0.4	1.63	0.81	2.43	3.02		1.62	
8	0.0350	164.0	75.9	0.5	1.74	0.81	2.55	3.16		1.68	
9	0.0400	173.0	80.1	0.6	1.84	0.81	2.64	3.28		1.73	
10	0.0450	178.0	82.4	0.6	1.89	0.81	2.70	3.34		1.75	
11	0.0500	186.0	86.1	0.7	1.97	0.81	2.78	3.45		1.79	
12	0.0750	210.0	97.2	1.1	2.22	0.81	3.03	3.75		1.92	
13	0.1000	226.0	104.6	1.4	2.38	0.81	3.19	3.95		2.00	
14	0.1250	241.0	111.6	1.8	2.53	0.81	3.34	4.14		2.07	
15	0.1500	253.0	117.1	2.1	2.65	0.81	3.45	4.28		2.13	
16	0.1750	264.0	122.2	2.5	2.75	0.81	3.56	4.41		2.18	
17	0.2000	270.0	125.0	2.9	2.80	0.81	3.61	4.48		2.21	
18	0.2500	283.0	131.0	3.6	2.92	0.81	3.72	4.62		2.26	
19	0.3000	290.0	134.3	4.3	2.97	0.81	3.77	4.68		2.29	
20	0.3500	299.0	138.4	5.0	3.03	0.81	3.84	4.76		2.32	
21	0.4000	307.0	142.1	5.7	3.09	0.81	3.90	4.84		2.35	
22	0.5000	319.0	147.7	7.2	3.16	0.81	3.97	4.92		2.39	
23	0.6000	330.0	152.8	8.6	3.22	0.81	4.03	5.00		2.42	
24	0.7000	336.0	155.6	10.0	3.23	0.81	4.04	5.01		2.42	
25	0.8000	345.0	159.7	11.4	3.26	0.81	4.07	5.05		2.44	
26	0.9000	353.0	163.4	12.9	3.29	0.81	4.09	5.08		2.45	
27	1.0000	362.0	167.6	14.3	3.31	0.81	4.12	5.11		2.46	
28	1.1000	369.0	170.8	15.7	3.32	0.81	4.13	5.12		2.47	
29	1.2000	375.0	173.6	17.2	3.32	0.81	4.13	5.12		2.47	

pp A Annex G-1	arameters	for Specimen Ros	gical Investigations North of Redline
Specimen Parameter	Initial	Saturated	Final
Moisture content: Moist soil+tare, gms.	122.110		1314.500
Moisture content: Dry soil+tare, gms.	109.300		1148.100
Moisture content: Tare, gms.	30.670		108.500
Moisture, %	16.3	25.2	16.0
Moist specimen weight, gms.	1205.4		
Diameter, in.	2.84	2.83	
Area, in. ²	6.33	6.29	
Height, in.	6.19	6.17	
Net decrease in height, in.		0.02	
Wet Density, pcf	117.1	127.3	
Dry density, pcf	100.7	101.7	
Void ratio	0.7122	0.6957	
Saturation, %	63.2	100.0	

Test Readings for Specimen No. 2

Primary load ring constant = .463 lbs. per input unit

Membrane modulus = 0.124105 kN/cm^2

Membrane thickness = 0.02 cm

Cell pressure = 8.30 psi (1.20 ksf)

Back pressure = 0.00 psi (0.00 ksf)

Strain rate, in./min. = 0.05

Fail. Stress = 4.80 ksf at reading no. 29

No.	Def. Dial in.	Load Dial	Load lbs.	Strain	Deviator Stress ksf	Minor Princ. Stress ksf	Major Princ. Stress ksf	1:3 Ratio	P ksf	Q ksf		
0	0.0000	0.0	0.0	0.0	0.00	1.20	1.20	1.00		1.20		
1	0.0010	25.0	11.6	0.0	0.26	1.20	1.46	1.22		1.33		
2	0.0050	68.0	31.5	0.1	0.72	1.20	1.91	1.60		1.56		
3	0.0100	94.0	43.5	0.2	0.99	1.20	2.19	1.83		1.69		
4	0.0150	113.0	52.3	0.2	1.19	1.20	2.39	2.00		1.79		
5	0.0200	130.0	60.2	0.3	1.37	1.20	2.57	2.15		1.88		
6	0.0250	146.0	67.6	0.4	1.54	1.20	2.74	2.29		1.97		
7	0.0300	162.0	75.0	0.5	1.71	1.20	2.90	2.43		2.05		
8	0.0350	175.0	81.0	0.6	1.84	1.20	3.04	2.54		2.12		
9	0.0400	189.0	87.5	0.6	1.99	1.20	3.18	2.66		2.19		
10	0.0450	197.0	91.2	0.7	2.07	1.20	3.27	2.73		2.23		
11	0.0500	208.0	96.3	0.8	2.19	1.20	3.38	2.83		2.29		
12	0.0750	255.0	118.1	1.2	2.67	1.20	3.86	3.23		2.53		
13	0.1000	285.0	132.0	1.6	2.97	1.20	4.17	3.49		2.68		
14	0.1250	313.0	144.9	2.0	3.25	1.20	4.44	3.72		2.82		
15	0.1500	332.0	153.7	2.4	3.43	1.20	4.63	3.87		2.91		
16	0.1750	348.0	161.1	2.8	3.58	1.20	4.78	4.00		2.99		
17	0.2000	364.0	168.5	3.2	3.73	1.20	4.93	4.12		3.06		
18	0.2500	379.0	175.5	4.1	3.85	1.20	5.05	4.22		3.12		
19	0.3000	399.0	184.7	4.9	4.02	1.20	5.22	4.36		3.21		
20	0.3500	416.0	192.6	5.7	4.16	1.20	5.35	4.48		3.27		
21	0.4000	430.0	199.1	6.5	4.26	1.20	5.46	4.56		3.33		
22	0.5000	445.0	206.0	8.1	4.33	1.20	5.53	4.62		3.36		
23	0.6000	463.0	214.4	9.7	4.43	1.20	5.62	4.70		3.41		
24	0.7000	484.0	224.1	11.3	4.55	1.20	5.74	4.80		3.47		
SANGER STREET	MACTEC Engineering and Consulting, Inc.											

App A Ar	App A Annex G-1 Test Readings for Specimen No. 2												
No.	Def. Dial in.	Load Dial	Load lbs.	Strain %	Deviator Stress ksf	Minor Princ. Stress ksf		1:3 Ratio	P ksf	Q ksf			
25	0.8000	499.0	231.0	13.0	4.60	1.20	5.80	4.85		3.50			
26	0.9000	515.0	238.4	14.6	4.66	1.20	5.85	4.90		3.53			
27	1.0000	530.0	245.4	16.2	4.70	1.20	5.90	4.94		3.55			
28	1.1000	542.0	250.9	17.8	4.72	1.20	5.91	4.95		3.55			
29	1.2000	563.0	260.7	19.4	4.80	1.20	6.00	5.02		3.60			
					Parame	eters for Sp	ecimen No	. 3					
Spe	ecimen P	aramete	•		Ini	tial	Saturated		Final		Annual Control of the		
Mois	ture cont	ent: Moi	st soil+f	tare, gn	ns. 113.5	500			1454.600)			
Mois	ture cont	ent: Dry	soil+tar	e, gms	. 101.8	310			1264.500)			
Moist	ture cont	ent: Tare	e, gms.		30.0)10			106.100)			
Moist	ture, %				1	6.3	24.9		16.4	1			
Moist	t specime	en weigh	t, gms.		134	7.8							
Diam	eter, in.				2.	.84	2.83						
Area,	in. ²				6.	.33	6.29						
Heigh	ıt, in.				6	.89	6.87						
Net d	ecrease i	in height	, in.				0.02						
Wet D	ensity, p	cf			11	7.6	127.6						
Dry d	ensity, p	cf			10	1.2	102.2						
Void	ratio				0.70	143	0.6866						

Test Readings for Specimen No. 3

100.0

63.8

Primary load ring constant = .463 lbs. per input unit

Membrane modulus = 0.124105 kN/cm^2

Membrane thickness = 0.02 cm

Cell pressure = 13.90 psi (2.00 ksf)

Back pressure = 0.00 psi (0.00 ksf)

Strain rate, in./min. = 0.05

Saturation, %

Fail. Stress = 6.53 ksf at reading no. 28

No.	Def. Dial in.	Load Dial	Load lbs.	Strain %	Deviator Stress ksf	Minor Princ. Stress ksf	Major Princ. Stress ksf	1:3 Ratio	P ksf	Q ksf
0	0.0000	0.0	0.0	0.0	0.00	2.00	2.00	1.00		2.00
1	0.0010	15.0	6.9	0.0	0.16	2.00	2.16	1.08		2.08
2	0.0050	87.0	40.3	0.1	0.92	2.00	2.92	1.46		2.46
3	0.0100	138.0	63.9	0.1	1.46	2.00	3.46	1.73		2.73
4	0.0150	170.0	78.7	0.2	1.80	2.00	3.80	1.90		2.90
5	0.0200	193.0	89.4	0.3	2.04	2.00	4.04	2.02		3.02
6	0.0250	217.0	100.5	0.4	2.29	2.00	4.29	2.14		3.15
7	0.0300	237.0	109.7	0.4	2.50	2.00	4.50	2.25		3.25
8	0.0350	255.0	118.1	0.5	2.69	2.00	4.69	2.34		3.35
9	0.0400	272.0	125.9	0.6	2.87	2.00	4.87	2.43		3.43
10	0.0450	290.0	134.3	0.7	3.05	2.00	5.06	2.53		3.53
11	0.0500	300.0	138.9	0.7	3.16	2.00	5.16	2.58		3.58
12	0.0750	360.0	166.7	1.1	3.77	2.00	5.78	2.89		3.89
13	0.1000	408.0	188.9	1.5	4.26	2.00	6.26	3.13		4.13
14	0.1250	445.0	206.0	1.8	4.63	2.00	6.63	3.31		4.32
15	0.1500	473.0	219.0	2.2	4.90	2.00	6.91	3.45		4.45

App A Annex G-1 Test Readings for Specimen No. 3 Investigations North of Redline												
No.	Def. Dial in.	Load Dial	Load lbs.	Strain %	Deviator Stress ksf	Minor Princ. Stress ksf	Major Princ. Stress ksf	1:3 Ratio	P ksf	Q ksf		
16	0.1750	497.0	230.1	2.5	5.13	2.00	7.13	3.56		4.57		
17	0.2000	517.0	239.4	2.9	5.32	2.00	7.32	3.66		4.66		
18	0.2500	553.0	256.0	3.6	5.65	2.00	7.65	3.82		4.83		
19	0.3000	576.0	266.7	4.4	5.84	2.00	7.84	3.92		4.92		
20	0.3500	591.0	273.6	5.1	5.94	2.00	7.95	3.97		4.97		
21	0.4000	607.0	281.0	5.8	6.06	2.00	8.06	4.03		5.03		
22	0.5000	635.0	294.0	7.3	6.24	2.00	8.24	4.12		5.12		
23	0.6000	652.0	301.9	8.7	6.31	2.00	8.31	4.15		5.15		
24	0.7000	672.0	311.1	10.2	6.40	2.00	8.40	4.20		5.20		
25	0.8000	695.0	321.8	11.7	6.51	2.00	8.51	4.25		5.26		
26	0.9000	706.0	326.9	13.1	6.50	2.00	8.50	4.25		5.25		
27	1.0000	720.0	333.4	14.6	6.52	2.00	8.52	4.26		5.26		
28	1.1000	734.0	339.8	16.0	6.53	2.00	8.53	4.26		5.27		

Normal Stress, ksf

	Sai	mple No.	1	2	3	
3	0	Water Content, Dry Density, pcf Saturation, Void Ratio Diameter, in. Height, in.	16.2 105.1 69.7 0.6400 2.85 6.72	16.2 105.8 71.1 0.6298 2.84 6.65	16.3 103.8 68.1 0.6609 2.84 7.32	konse Mediente erreren errere err
1	At Test	Water Content, Dry Density, pcf Saturation, Void Ratio Diameter, in. Height, in.	22.6 106.1 100.0 0.6254 2.84 6.70	22.2 106.9 100.0 0.6136 2.83 6.63	22.4 106.5 100.0 0.6189 2.82 7.26	
-	Str	ain rate, in./min.	0.05	0.05	0.05	MM Committee and the committee
	Ba	ck Pressure, ksf	0.00	0.00	0.00	
	Cel	ll Pressure, ksf	0.81	1.20	2.00	
	Fai	l. Stress, ksf	4.44	5.27	6.77	
	Ult.	Stress, ksf				
_	σ_1	Failure, ksf	5.24	6.47	8.77	
***************************************	σ_3	Failure, ksf	0.81	1.20	2.00	

Type of Test:

Unconsolidated Undrained

Sample Type: remold

Description: Tan Slightly Clayey Silty Medium to Fine SAND with Shell and Rock Fragments

Specific Gravity= 2.762

Remarks: Specimens cured 14 days

Client: Nodarse and Associates

Project: Material Testing-Nodarse

Sample Number: UU-90%-14 day cured

Proj. No.: 6738-05-4573

Date: 6-28-05

TRIAXIAL SHEAR TEST REPORT

MACTEC ENGINEERING AND CONSULTING, INC.

Reviewed By ____

Tested By: MC

Checked By: _

Sukhwani

CEPP Final PIR and EIS

July 2014

Tested By: MC Checked By:

App A Annex G-1

Geological Investigations North of Redline

TRIAXIAL COMPRESSION TEST

Unconsolidated Undrained

7/14/2005 8:59 AM

Date:

6-28-05

Client:

Nodarse and Associates

Project:

Material Testing-Nodarse

Project No.:

6738-05-4573

Sample Number:

UU-90%-14 day cured

Description:

Tan Slightly Clayey Silty Medium to Fine SAND with Shell and Rock Fragments

Remarks:

Specimens cured 14 days

Type of Sample:

remold

Specific Gravity=2.762

LL=

PL=

PI=

Test Method:

COE uniform strain

The state of the s			
P	arameter	s for Specimen N	lo.1
Specimen Parameter	Initial	Saturated	Final
Moisture content: Moist soil+tare, gms.	139.180		1490.700
Moisture content: Dry soil+tare, gms.	124.280		1300.300
Moisture content: Tare, gms.	32.030		116.290
Moisture, %	16.2	22.6	16.1
Moist specimen weight, gms.	1374.2		
Diameter, in.	2.85	2.84	
Area, in. ²	6.38	6.34	
Height, in.	6.72	6.70	
Net decrease in height, in.		0.02	
Wet Density, pcf	122.1	130.1	
Dry density, pcf	105.1	106.1	
Void ratio	0.6400	0.6254	
Saturation, %	69.7	100.0	

Test Readings for Specimen No. 1

Primary load ring constant = .463 lbs. per input unit

Membrane modulus = 0.124105 kN/cm²

Membrane thickness = 0.02 cm

Cell pressure = 5.60 psi (0.81 ksf)

Back pressure = 0.00 psi (0.00 ksf)

Strain rate, in/min. = 0.05

Fail. Stress = 4.44 ksf at reading no. 27

					Test Re	adings for S	Specimen N	lo. 1			
No.	Def. Dial in.	Load Dial	Load lbs.	Strain %	Deviator Stress ksf	Minor Princ. Stress ksf	Major Princ. Stress ksf	1:3 Ratio	P ksf	Q ksf	
0	0.0000	0.0	0.0	0.0	0.00	0.81	0.81	1.00		0.81	
1	0.0010	23.0	10.6	0.0	0.24	0.81	1.05	1.30		0.93	
2	0.0050	68.0	31.5	0.1	0.71	0.81	1.52	1.89		1.16	
3	0.0100	98.0	45.4	0.1	1.03	0.81	1.84	2.28		1.32	
4	0.0150	117.0	54.2	0.2	1.23	0.81	2.03	2.52		1.42	
5	0.0200	138.0	63.9	0.3	1.45	0.81	2.25	2.79		1.53	
6	0.0250	150.0	69.5	0.4	1.57	0.81	2.38	2.95		1.59	
7	0.0300	167.0	77.3	0.4	1.75	0.81	2.55	3.17		1.68	
8	0.0350	178.0	82.4	0.5	1.86	0.81	2.67	3.31		1.74	
9	0.0400	188.0	87.0	0.6	1.96	0.81	2.77	3.44		1.79	
10	0.0450	201.0	93.1	0.7	2.10	0.81	2.91	3.60		1.86	
11	0.0500	211.0	97.7	0.7	2.20	0.81	3.01	3.73		1.91	
12	0.0750	262.0	121.3	1.1	2.72	0.81	3.53	4.38		2.17	
13	0.1000	296.0	137.0	1.5	3.07	0.81	3.87	4.80		2.34	
14	0.1250	314.0	145.4	1.9	3.24	0.81	4.05	5.02		2.43	
15	0.1500	337.0	156.0	2.2	3.46	0.81	4.27	5.30		2.54	
16	0.2000	364.0	168.5	3.0	3.71	0.81	4.52	5.60		2.66	
17	0.2500	388.0	179.6	3.7	3.93	0.81	4.73	5.87		2.77	
18	0.3000	400.0	185.2	4.5	4.02	0.81	4.82	5.98		2.81	
19	0.3500	411.0	190.3	5.2	4.10	0.81	4.90	6.08		2.85	
20	0.4000	423.0	195.8	6.0	4.18	0.81	4.99	6.19		2.90	
21	0.5000	436.0	201.9	7.5	4.24	0.81	5.05	6.26		2.93	
22	0.6000	448.0	207.4	9.0	4.29	0.81	5.09	6.32		2.95	
23	0.7000	458.0	212.1	10.4	4.31	0.81	5.12	6.35		2.96	
24	0.8000	467.0	216.2	11.9	4.32	0.81	5.13	6.36		2.97	
25	0.9000	482.0	223.2	13.4	4.39	0.81	5.19	6.44		3.00	
26	1.0000	494.0	228.7	14.9	4.42	0.81	5.22	6.48		3.02	
27	1.1000	505.0	233.8	16.4	4.44	0.81	5.24	6.50		3.03	

P	arameters	for Specimen No. 2		
Specimen Parameter	Initial	Saturated	Final	
Moisture content: Moist soil+tare, gms.	93.510		1475.100	
Moisture content: Dry soil+tare, gms.	84.650		1284.200	
Moisture content: Tare, gms.	30.010		115.500	
Moisture, %	16.2	22.2.	16.3	
Moist specimen weight, gms.	1359.6			
Diameter, in.	2.84	2.83		
Area, in. ²	6.33	6.29		
Height, in.	6.65	6.63		
Net decrease in height, in.		0.02		
Wet Density, pcf	123.0	130.6		
Dry density, pcf	105.8	106.9		
Void ratio	0.6298	0.6136		
Saturation, %	71.1	100.0		

Test Readings for Specimen No. 2

Primary load ring constant = .463 lbs. per input unit

Membrane modulus = 0.124105 kN/cm²

Membrane thickness = 0.02 cm

Cell pressure = 8.30 psi (1.20 ksf)

Back pressure = 0.00 psi (0.00 ksf)

Strain rate, in./min. = 0.05

Fail. Stress = 5.27 ksf at reading no. 25

No.	Def. Dial in.	Load Dial	Load lbs.	Strain %	Deviator Stress ksf	Minor Princ. Stress ksf	Major Princ. Stress ksf	1:3 Ratio	P ksf	Q ksf	
0	0.0000	0.0	0.0	0.0	0.00	1.20	1.20	1.00		1.20	
1	0.0010	20.0	9.3	0.0	0.21	1.20	1.41	1.18		1.30	
2	0.0050	63.0	29.2	0.1	0.67	1.20	1.86	1.56		1.53	
3	0.0100	110.0	50.9	0.2	1.16	1.20	2.36	1.97		1.78	
4	0.0150	141.0	65.3	0.2	1.49	1.20	2.69	2.25		1.94	
5	0.0200	166.0	76.9	0.3	1.75	1.20	2.95	2.47		2.07	
6	0.0250	190.0	88.0	0.4	2.01	1.20	3.20	2.68		2.20	
7	0.0300	205.0	94.9	0.5	2.16	1.20	3.36	2.81		2.28	
8	0.0350	223.0	103.2	0.5	2.35	1.20	3.55	2.97		2.37	
9	0.0400	239.0	110.7	0.6	2.52	1.20	3.71	3.11		2.45	
10	0.0450	254.0	117.6	0.7	2.67	1.20	3.87	3.24		2.53	
11	0.0500	268.0	124.1	0.8	2.82	1.20	4.01	3.36		2.60	
12	0.0750	322.0	149.1	1.1	3.37	1.20	4.57	3.82		2.88	
13	0.1000	365.0	169.0	1.5	3.81	1.20	5.00	4.19		3.10	
14	0.1250	398.0	184.3	1.9	4.14	1.20	5.33	4.46		3.26	
15	0.1500	420.0	194.5	2.3	4.35	1.20	5.54	4.64		3.37	
16	0.1750	440.0	203.7	2.6	4.54	1.20	5.73	4.80		3.46	
17	0.2000	460.0	213.0	3.0	4.73	1.20	5.92	4.95		3.56	
18	0.2500	485.0	224.6	3.8	4.94	1.20	6.14	5.14		3.67	
19	0.3000	498.0	230.6	4.5	5.04	1.20	6.23	5.21		3.71	
20	0.3500	508.0	235.2	5.3	5.10	1.20	6.29	5.27		3.74	
21	0.4000	517.0	239.4	6.0	5.15	1.20	6.34	5.31		3.77	
22	0.5000	534.0	247.2	7.5	5.23	1.20	6.43	5.38		3.81	
23	0.6000	544.0	251.9	9.1	5.24	1.20	6.44	5.39		3.82	
24	0.7000	556.0	257.4	10.6	5.27	1.20	6.46	5.41		3.83	
				_ MAC	TEC En	gineering a	nd Consulti	ing, Inc			

CEPP Final PIR and EIS July 2014

No.	Def. Dial in.	Load Dial	Load lbs.	Strain %	Deviator Stress ksf	Minor Princ. Stress ksf	Major Princ. Stress ksf	1:3 Ratio	P ksf	Q ksf
25	0.8000	566.0	262.1	12.1	5.27	1.20	6.47	5.41		3.83
26	0.9000	574.0	265.8	13.6	5.26	1.20	6.45	5.40		3.82
27	1.0000	582.0	269.5	15.1	5.24	1.20	6.43	5.38		3.81
28	1.1000	590.0	273.2	16.6	5.21	1.20	6.41	5.36		3.80
29	1.2000	596.0	275.9	18.1	5.17	1.20	6.37	5.33		3.78

P	arameter	s for Specimen No	. 3	
Specimen Parameter	Initial	Saturated	Final	
Moisture content: Moist soil+tare, gms.	115.810		358.120	
Moisture content: Dry soil+tare, gms.	103.080		315.900	
Moisture content: Tare, gms.	25.010		54.860	
Moisture, %	16.3	22.4	16.2	
Moist specimen weight, gms.	1469.7			
Diameter, in.	2.84	2.82		
Area, in. ²	6.33	6.23		
Height, in.	7.32	7.26		
Net decrease in height, in.		0.06		
Wet Density, pcf	120.7	130.4		
Dry density, pcf	103.8	106.5		
Void ratio	0.6609	0.6189		
Saturation, %	68.1	100.0		
Tes	t Reading	gs for Specimen N	lo.3	
Primary load ring constant = .463 lbs. pe	r input unit		的现在分词,我们就是一个人们的,我们就是一个人们的,我们就是一个人们的,我们就是一个人们的,我们就是一个人们的,我们就是一个人们的,我们就是一个人们的,我们就是 第一条章	and the state of t

Membrane modulus = 0.124105 kN/cm²

Membrane thickness = 0.02 cm

Cell pressure = 13.90 psi (2.00 ksf)

Back pressure = 0.00 psi (0.00 ksf)

Strain rate, in./min. = 0.05

Fail. Stress = 6.77 ksf at reading no. 27

No.	Def. Dial in.	Load Dial	Load lbs.	Strain %	Deviator Stress ksf	Minor Princ. Stress ksf	Major Princ. Stress ksf	1:3 Ratio	P ksf	Q ksf
0	0.0000	0.0	0.0	0.0	0.00	2.00	2.00	1.00		2.00
1	0.0010	5.0	2.3	0.0	0.05	2.00	2.06	1.03		2.03
2	0.0050	7.0	3.2	0.1	0.07	2.00	2.08	1.04		2.04
3	0.0100	25.0	11.6	0.1	0.27	2.00	2.27	1.13		2.14
4	0.0150	80.0	37.0	0.2	0.85	2.00	2.86	1.43		2.43
5	0.0200	123.0	56.9	0.3	1.31	2.00	3.31	1.66		2.66
6	0.0250	175.0	81.0	0.3	1.87	2.00	3.87	1.93		2.94
7	0.0300	209.0	96.8	0.4	2.23	2.00	4.23	2.11		3.12
8	0.0350	240.0	111.1	0.5	2.56	2.00	4.56	2.28		3.28
9	0.0400	268.0	124.1	0.6	2.85	2.00	4.86	2.43		3.43
10	0.0450	290.0	134.3	0.6	3.09	2.00	5.09	2.54		3.54
11	0.0500	307.0	142.1	0.7	3.26	2.00	5.27	2.63		3.63
12	0.0750	378.0	175.0	1.0	4.01	2.00	6.01	3.00		4.00
13	0.1000	432.0	200.0	1.4	4.56	2.00	6.56	3.28		4.28
14	0.1250	470.0	217.6	1.7	4.95	2.00	6.95	3.47		4.47
15	0.1500	501.0	232.0	2.1	5.25	2.00	7.25	3.62		4.63

					Test Re	adings for S	Specimen N	0.3			
No.	Def. Dial in.	Load Dial	Load lbs.	Strain %	Deviator Stress ksf	Minor Princ. Stress ksf	Major Princ. Stress ksf	1:3 Ratio	P ksf	Q ksf	
16	0.2000	552.0	255.6	2.8	5.75	2.00	7.75	3.87		4.88	
17	0.2500	580.0	268.5	3.4	6.00	2.00	8.00	4.00		5.00	
18	0.3000	603.0	279.2	4.1	6.19	2.00	8.19	4.09		5.10	
19	0.3500	618.0	286.1	4.8	6.30	2.00	8.30	4.15		5.15	
20	0.4000	634.0	293.5	5.5	6.41	2.00	8.42	4.20		5.21	
21	0.5000	649.0	300.5	6.9	6.47	2.00	8.47	4.23		5.24	
22	0.6000	662.0	306.5	8.3	6.50	2.00	8.50	4.25		5.25	
23	0.7000	686.0	317.6	9.6	6.64	2.00	8.64	4.32		5.32	
24	0.8000	699.0	323.6	11.0	6.66	2.00	8.66	4.33		5.33	
25	0.9000	715.0	331.0	12.4	6.71	2.00	8.71	4.35		5.35	
26	1.0000	730.0	338.0	13.8	6.74	2.00	8.74	4.37		5.37	
27	1.1000	745.0	344.9	15.2	6.77	2.00	8.77	4.38		5.39	

Normal Stress, ksf

	Sa	mple No.	1	2	3	
3	, in	Water Content, Dry Density, pcf Saturation, Void Ratio Diameter, in. Height, in.	15.3 109.5 73.5 0.5754 2.84 5.73	15.3 109.0 72.7 0.5818 2.84 5.23	15.4 108.9 72.9 0.5835 2.84 5.47	
1	At Test	Water Content, Dry Density, pcf Saturation, Void Ratio Diameter, in. Height, in.	20.4 110.4 100.0 0.5622 2.83 5.71	19.3 112.5 100.0 0.5331 2.81 5.18	20.3 110.5 100.0 0.5601 2.83 5.44	
	Str	ain rate, in./min.	0.05	0.05	0.05	
	Ba	ck Pressure, ksf	0.0	0.0	0.0	
	Ce	ll Pressure, ksf	0.8	1.2	2.0	
	Fai	I. Stress, ksf	9.1	11.0	12.8	
-	Ult.	Stress, ksf				
	σ_1	Failure, ksf	9.9	12.2	14.8	
-	σ_3	Failure, ksf	0.8	1.2	2.0	

Type of Test:

Unconsolidated Undrained

Sample Type: remold

Description: Tan Slightly Clayey Silty Medium to Fine SAND with Shell and Rock Fragments

Specific Gravity= 2.762

Remarks:

Client: Nodarse and Associates

Project: Material Testing-Nodarse

Sample Number: UU-95%-B

Proj. No.: 6738-05-4573

Date: 6-11-05

TRIAXIAL SHEAR TEST REPORT

MACTEC ENGINEERING AND CONSULTING, INC.

Reviewed By

Tested By: mc

eym Checked By: 1

CEPP Final PIR and EIS

July 2014

CEPP Final PIR and EIS

July 2014

TRIAXIAL COMPRESSION TEST

Unconsolidated Undrained

6/15/2005 10:46 AM

Date:

6-11-05

Client:

Nodarse and Associates

Project:

Material Testing-Nodarse

Project No.:

6738-05-4573

Sample Number:

UU-95%-B

Description:

Tan Slightly Clayey Silty Medium to Fine SAND with Shell and Rock Fragments

Remarks:

Type of Sample: remold

Specific Gravity=2.762 LL=

PL=

PI=

Test Method: COE uniform strai	n			
P	arameter	s for Specimen No.		
Specimen Parameter	Initial	Saturated	Final	
Moisture content: Moist soil+tare, gms.	188.130		1340.400	
Moisture content: Dry soil+tare, gms.	170.070		1175.600	
Moisture content: Tare, gms.	52.090		116.300	
Moisture, %	15.3	20.4	15.6	
Moist specimen weight, gms.	1202.5			
Diameter, in.	2.84	2.83		
Area, in. ²	6.33	6.30		
Height, in.	5.73	5.71		
Net decrease in height, in.		0.02		
Wet Density, pcf	126.2	132.8		
Dry density, pcf	109.5	110.4		
Void ratio	0.5754	0.5622		
Saturation, %	73.5	100.0		

Test Readings for Specimen No. 1

Load ring constant = 3.313 lbs. per input unit

Membrane modulus = 0.124105 kN/cm²

Membrane thickness = 0.02 cm

Cell pressure = 5.60 psi (0.81 ksf)

Back pressure = 0.00 psi (0.00 ksf)

Strain rate, in./min. = 0.05

Fail. Stress = 9.05 ksf at reading no. 17

					Test Rea	adings for S	Specimen N	lo. 1			
No.	Def. Dial in.	Load Dial	Load lbs.	Strain %	Deviator Stress ksf	Minor Princ. Stress ksf	Major Princ. Stress ksf	1:3 Ratio	P ksf	Q ksf	
0	0.0000	0.00	0.0	0.0	0.00	0.81	0.81	1.00		0.81	
1	0.0010	5.00	16.6	0.0	0.38	0.81	1.19	1.47		1.00	
2	0.0050	12.00	39.8	0.1	0.91	0.81	1.71	2.13		1.26	
3	0.0100	18.00	59.6	0.2	1.36	0.81	2.17	2.69		1.49	
4	0.0150	22.00	72.9	0.3	1.66	0.81	2.47	3.06		1.64	
5	0.0200	26.00	86.1	0.4	1.96	0.81	2.77	3.43		1.79	
6	0.0250	29.00	96.1	0.4	2.19	0.81	2.99	3.71		1.90	
7	0.0300	32.00	106.0	0.5	2.41	0.81	3.22	3.99		2.01	
8	0.0350	36.00	119.3	0.6	2.71	0.81	3.52	4.36		2.16	
9	0.0400	40.00	132.5	0.7	3.01	0.81	3.81	4.73		2.31	
10	0.0450	43.00	142.5	0.8	3.23	0.81	4.04	5.01		2.42	
11	0.0500	47.00	155.7	0.9	3.53	0.81	4.33	5.38		2.57	
12	0.0750	65.00	215.3	1.3	4.86	0.81	5.66	7.02		3.24	
13	0.1000	81.00	268.4	1.8	6.03	0.81	6.83	8.47		3.82	
14	0.1250	100.00	331.3	2.2	7.41	0.81	8.21	10.19		4.51	
15	0.1500	112.00	371.1	2.6	8.26	0.81	9.07	11.24		4.94	
16	0.2000	123.00	407.5	3.5	8.99	0.81	9.80	12.15		5.30	
17	0.2500	125.00	414.1	4.4	9.05	0.81	9.86	12.23		5.33	
18	0.3000	124.00	410.8	5.3	8.90	0.81	9.70	12.03		5.26	
19	0.3500	123.00	407.5	6.1	8.74	0.81	9.55	11.84		5.18	
20	0.4000	121.00	400.9	7.0	8.52	0.81	9.33	11.57		5.07	
21	0.5000	120.00	397.6	8.8	8.29	0.81	9.10	11.28		4.95	
22	0.6000	122.00	404.2	10.5	8.27	0.81	9.08	11.25		4.94	
23	0.7000	124.00	410.8	12.3	8.24	0.81	9.05	11.22		4.93	
24	0.8000	126.00	417.4	14.0	8.21	0.81	9.01	11.18		4.91	
25	0.9000	125.00	414.1	15.8	7.98	0.81	8.78	10.89		4.79	
26	1.0000	124.00	410.8	17.5	7.75	0.81	8.55	10.61		4.68	
27	1.1000	125.00	414.1	19.3	7.64	0.81	8.45	10.48		4.63	
28	1.2000	123.00	407.5	21.0	7.36	0.81	8.17	10.13		4.49	

P	arameter	s for Specimen No	0.2	
Specimen Parameter	Initial	Saturated	Final	MATERIA.
Moisture content: Moist soil+tare, gms.	188.130		1199.200	
Moisture content: Dry soil+tare, gms.	170.070		1052.600	
Moisture content: Tare, gms.	52.090		115.000	
Moisture, %	15.3	19.3	15.6	
Moist specimen weight, gms.	1093.1			
Diameter, in.	2.84	2.81		
Area, in. ²	6.33	6.20		
Height, in.	5.23	5.18		
Net decrease in height, in.		0.05		
Wet Density, pcf	125.7	134.2		
Dry density, pcf	109.0	112.5		
Void ratio	0.5818	0.5331		
Saturation, %	72.7	100.0		

Test Readings for Specimen No. 2

Load ring constant = 3.313 lbs. per input unit

Membrane modulus = 0.124105 kN/cm^2

Membrane thickness = 0.02 cm

Cell pressure = 8.30 psi (1.20 ksf)

Back pressure = 0.00 psi (0.00 ksf)

Strain rate, in./min. = 0.05

Fail. Stress = 11.00 ksf at reading no. 20

No.	Def. Dial in.	Load Dial	Load lbs.	Strain	Deviator Stress ksf	Minor Princ. Stress ksf	Major Princ. Stress ksf	1:3 Ratio	P ksf	Q ksf
0	0.0000	0.00	0.0	0.0	0.00	1.20	1.20	1.00		1.20
1	0.0010	5.00	16.6	0.0	0.38	1.20	1.58	1.32		1.39
2	0.0050	16.00	53.0	0.1	1.23	1.20	2.42	2.03		1.81
3	0.0100	26.00	86.1	0.2	2.00	1.20	3.19	2.67		2.19
4	0.0150	35.00	116.0	0.3	2.68	1.20	3.88	3.25		2.54
5	0.0200	41.00	135.8	0.4	3.14	1.20	4.34	3.63		2.77
6	0.0250	49.00	162.3	0.5	3.75	1.20	4.95	4.14		3.07
7	0.0300	54.00	178.9	0.6	4.13	1.20	5.32	4.45		3.26
8	0.0350	61.00	202.1	0.7	4.66	1.20	5.85	4.90		3.52
9	0.0400	66.00	218.7	0.8	5.04	1.20	6.23	5.21		3.71
10	0.0450	70.00	231.9	0.9	5.34	1.20	6.53	5.46		3.86
11	0.0500	76.00	251.8	1.0	5.79	1.20	6.98	5.84		4.09
12	0.0750	90.00	298.2	1.4	6.82	1.20	8.02	6.71		4.61
13	0.1000	103.00	341.2	1.9	7.77	1.20	8.96	7.50		5.08
14	0.1250	110.00	364.4	2.4	8.25	1.20	9.45	7.91		5.32
15	0.1500	119.00	394.2	2.9	8.89	1.20	10.08	8.43		5.64
16	0.1750	132.00	437.3	3.4	9.81	1.20	11.00	9.21		6.10
17	0.2000	143.00	473.8	3.9	10.57	1.20	11.77	9.85		6.48
18	0.2500	149.00	493.6	4.8	10.90	1.20	12.10	10.12		6.65
19	0.3000	150.00	497.0	5.8	10.87	1.20	12.06	10.09		6.63
20	0.4000	155.00	513.5	7.7	11.00	1.20	12.19	10.20		6.69
21	0.5000	155.00	513.5	9.7	10.77	1.20	11.96	10.01		6.58
22	0.6000	155.00	513.5	11.6	10.54	1.20	11.73	9.82		6.46
23	0.7000	154.00	510.2	13.5	10.24	1.20	11.44	9.57		6.32
24	0.8000	153.00	506.9	15.5	9.95	1.20	11.14	9.32		6.17
				_ MAC	TEC En	gineering a	nd Consulti	ng, Inc.	(130) 130 130 130 130	

CEPP Final PIR and EIS

July 2014

		Table 100 September 1			Test Re	adings for S	Specimen N	0.2			
No.	Def. Dial in.	Load Dial	Load lbs.	Strain %	Deviator Stress ksf	Minor Princ. Stress ksf	Major Princ. Stress ksf	1:3 Ratio	P ksf	Q ksf	
25	0.9000	152.00	503.6	17.4	9.66	1.20	10.85	9.08		6.02	
26	1.0000	151.00	500.3	19.3	9.37	1.20	10.56	8.84		5.88	
27	1.1000	150.00	497.0	21.3	9.08	1.20	10.28	8.60		5.74	

		10100	0.00	WF # 7 - 4
Participant of the Participant of Pa	arameters	for Specimen No	. 3	
Specimen Parameter	Initial	Saturated	Final	er communications in a distributed temporary conversion of the Police of the recommendation of the State of the Control of the State of
Moisture content: Moist soil+tare, gms.	189.370		1256.200	
Moisture content: Dry soil+tare, gms.	171.030		1099.800	
Moisture content: Tare, gms.	51.890		98.400	
Moisture, %	15.4	20.3	15.6	
Moist specimen weight, gms.	1142.9			
Diameter, in.	2.84	2.83		
Area, in. ²	6.33	6.27		
Height, in.	5.47	5.44		
Net decrease in height, in.		0.03		
Wet Density, pcf	125.7	132.9		
Dry density, pcf	108.9	110.5		
Void ratio	0.5835	0.5601		
Saturation, %	72.9	100.0		
	4		1	

Test Readings for Specimen No. 3

Load ring constant = 3.313 lbs. per input unit

Membrane modulus = 0.124105 kN/cm²

Membrane thickness = 0.02 cm

Cell pressure = 13.90 psi (2.00 ksf)

Back pressure = 0.00 psi (0.00 ksf)

Strain rate, in/min. = 0.05

Fail. Stress = 12.84 ksf at reading no. 17

No.	Def. Dial in.	Load Dial	Load lbs.	Strain %	Deviator Stress ksf	Minor Princ. Stress ksf	Major Princ. Stress ksf	1:3 Ratio	P ksf	Q ksf	
0	0.0000	0.00	0.0	0.0	0.00	2.00	2.00	1.00		2.00	
1	0.0010	6.00	19.9	0.0	0.46	2.00	2.46	1.23		2.23	
2	0.0050	17.00	56.3	0.1	1.29	2.00	3.29	1.65		2.65	
3	0.0100	24.00	79.5	0.2	1.82	2.00	3.82	1.91		2.91	
4	0.0150	30.00	99.4	0.3	2.28	2.00	4.28	2.14		3.14	
5	0.0200	36.00	119.3	0.4	2.73	2.00	4.73	2.36		3.37	
6	0.0250	41.00	135.8	0.5	3.10	2.00	5.11	2.55		3.55	
7	0.0300	46.00	152.4	0.6	3.48	2.00	5.48	2.74		3.74	
8	0.0350	51.00	169.0	0.6	3.85	2.00	5.86	2.93		3.93	
9	0.0400	57.00	188.8	0.7	4.30	2.00	6.31	3.15		4.15	
10	0.0450	64.00	212.0	0.8	4.83	2.00	6.83	3.41		4.42	
11	0.0500	72.00	238.5	0.9	5.43	2.00	7.43	3.71		4.71	
12	0.0750	112.00	371.1	1.4	8.40	2.00	10.40	5.20		6.20	
13	0.1000	146.00	483.7	1.8	10.90	2.00	12.90	6.45		7.45	
14	0.1500	170.00	563.2	2.8	12.57	2.00	14.58	7.28		8.29	
15	0.1750	174.00	576.5	3.2	12.81	2.00	14.81	7.40		8.41	
16	0.2000	175.00	579.8	3.7	12.82	2.00	14.82	7.41		8.41	
17	0.2500	177.00	586.4	4.6	12.84	2.00	14.85	7.42		8.42	
			970.07 - N S S S S S S S.	_ MAC	CTEC En	gineering a	nd Consulti	ng, inc			20000

CEPP Final PIR and EIS July 2014

	Test Readings for Specimen No. 3										
No.	Def. Dial in.	Load Dial	Load lbs.	Strain %	Deviator Stress ksf	Minor Princ. Stress ksf	Major Princ. Stress ksf	1:3 Ratio	P ksf	Q ksf	
18	0.3000	178.00	589.7	5.5	12.79	2.00	14.79	7.39		8.40	
19	0.3500	177.00	586.4	6.4	12.60	2.00	14.60	7.29		8.30	
20	0.4000	176.00	583.1	7.3	12.40	2.00	14.40	7.20		8.20	
21	0.5000	175.00	579.8	9.2	12.09	2.00	14.09	7.04		8.05	
22	0.6000	170.00	563.2	11.0	11.51	2.00	13.51	6.75		7.75	
23	0.7000	170.00	563.2	12.9	11.27	2.00	13.27	6.63		7.64	
24	0.8000	174.00	576.5	14.7	11.29	2.00	13.29	6.64		7.65	
25	0.9000	178.00	589.7	16.5	11.30	2.00	13.30	6.65		7.65	
26	1.0000	179.00	593.0	18.4	11.11	2.00	13.12	6.55		7.56	
27	1.1000	181.00	599.7	20.2	10.98	2.00	12.99	6.49		7.49	
28	1.2000	179.00	593.0	22.0	10.61	2.00	12.61	6.30		7.31	

Normal Stress, ksf

	Sa	mple No.	1	2	3	
	<u>-</u>	Water Content, Dry Density, pcf Saturation.	16.6 104.1 70.0	16.1 103.5 66.7	16.8 104.6 71.5	
	T T	Void Ratio Diameter, in. Height, in.	0.6567 2.84 5.32	0.6651 2.84 5.50	0.6486 2.84 5.90	
•	At Test	Water Content, Dry Density, pcf Saturation, Void Ratio Diameter, in. Height, in.	22.9 105.6 100.0 0.6334 2.83 5.29	23.3 105.0 100.0 0.6425 2.83 5.47	22.8 105.7 100.0 0.6310 2.83 5.88	
Antifeste monthess	Str	ain rate, in./min.	0.05	0.05	0.05	
-	Bad	ck Pressure, ksf	0.0	0.0	0.0	
-	Cel	ll Pressure, ksf	0.8	1.2	2.0	
DESCRIPTION OF THE PERSON	Fai	I. Stress, ksf	6.4	9.8	10.6	
Management of the second	Ult.	. Stress, ksf				
_	σ_1	Failure, ksf	7.3	11.0	12.6	
-	σ_3	Failure, ksf	0.8	1.2	2.0	

Type of Test:

Unconsolidated Undrained

Sample Type: remolded

Description: Tan Slightly Clayey Silty Medium to

Fine SAND with Shell and Rock Fragments

Specific Gravity= 2.762

Remarks:

Client: Nodarse and Associates

Project: Material Testing-Nodarse

Sample Number: UU-90%-B

Proj. No.: 6738-05-4573

Date: 6-10-05

TRIAXIAL SHEAR TEST REPORT

MACTEC ENGINEERING AND CONSULTING, INC.

Reviewed By _

Tested By: mc

CEPP Final PIR and EIS

Checked By: Qini

Sukhwani

July 2014

CEPP Final PIR and EIS

Checked By:

TRIAXIAL COMPRESSION TEST

6/15/2005 10:45 AM

Unconsolidated Undrained

Date:

6-10-05

Client:

Nodarse and Associates

Project:

Material Testing-Nodarse

Project No.:

6738-05-4573

Sample Number:

UU-90%-B

Description:

Tan Slightly Clayey Silty Medium to Fine SAND with Shell and Rock Fragments

Remarks:

Type of Sample:

remolded

Specific Gravity=2.762

LL=

PL=

P|=

Test Method:

COE uniform strain

rest method: COE unitorni strai	11		
P	arameter	s for Specimen No. 1	
Specimen Parameter	Initial	Saturated	Final
Moisture content: Moist soil+tare, gms.	229.580		1194.700
Moisture content: Dry soil+tare, gms.	204.670		1041.000
Moisture content: Tare, gms.	55.040		115.200
Moisture, %	16.6	22.9	16.6
Moist specimen weight, gms.	1074.0		
Diameter, in.	2.84	2.83	
Area, in. ²	6.33	6.28	
Height, in.	5.32	5.29	
Net decrease in height, in.		0.03	
Wet Density, pcf	121.4	129.8	
Dry density, pcf	104.1	105.6	
Void ratio	0.6567	0.6334	
Saturation, %	70.0	100.0	

Test Readings for Specimen No. 1

Load ring constant = 3.313 lbs. per input unit

Membrane modulus = 0.124105 kN/cm²

Membrane thickness = 0.02 cm

Cell pressure = 5.60 psi (0.81 ksf)

Back pressure = 0.00 psi (0.00 ksf)

Strain rate, in./min. = 0.05

Fail. Stress = 6.45 ksf at reading no. 18

	Test Readings for Specimen No. 1										
No.	Def. Dial in.	Load Dial	Load lbs.	Strain %	Deviator Stress ksf	Minor Princ. Stress ksf	Major Princ. Stress ksf	1:3 Ratio	P ksf	Q ksf	
0	0.0000	0.00	0.0	0.0	0.00	0.81	0.81	1.00		0.81	
1	0.0010	3.00	9.9	0.0	0.23	0.81	1.03	1.28		0.92	
2	0.0050	10.00	33.1	0.1	0.76	0.81	1.57	1.94		1.19	
3	0.0100	14.00	46.4	0.2	1.06	0.81	1.87	2.32		1.34	
4	0.0150	17.00	56.3	0.3	1.29	0.81	2.10	2.60		1.45	
5	0.0200	19.00	62.9	0.4	1.44	0.81	2.25	2.78		1.53	
6	0.0250	24.00	79.5	0.5	1.82	0.81	2.62	3.25		1.71	
7	0.0300	28.00	92.8	0.6	2.12	0.81	2.92	3.62		1.86	
8	0.0350	31.00	102.7	0.7	2.34	0.81	3.15	3.90		1.98	
9	0.0400	35.00	116.0	0.8	2.64	0.81	3.45	4.27		2.13	
10	0.0450	39.00	129.2	0.8	2.94	0.81	3.75	4.65		2.28	
11	0.0500	42.00	139.1	0.9	3.16	0.81	3.97	4.92		2.39	
12	0.0750	60.00	198.8	1.4	4.50	0.81	5.30	6.58		3.05	
13	0.1000	70.00	231.9	1.9	5.22	0.81	6.03	7.47		3.42	
14	0.1250	78.00	258.4	2.4	5.79	0.81	6.60	8.18		3.70	
15	0.1500	82.00	271.7	2.8	6.06	0.81	6.86	8.51		3.84	
16	0.1750	87.00	288.2	3.3	6.40	0.81	7.20	8.93		4.00	
17	0.2000	88.00	291.5	3.8	6.44	0.81	7.24	8.98		4.03	
18	0.2500	89.00	294.9	4.7	6.45	0.81	7.25	8.99		4.03	
19	0.3000	89.00	294.9	5.7	6.38	0.81	7.19	8.92		4.00	
20	0.3500	90.00	298.2	6.6	6.39	0.81	7.20	8.92		4.00	
21	0.4000	90.00	298.2	7.6	6.33	0.81	7.13	8.84		3.97	
22	0.5000	90.00	298.2	9.4	6.20	0.81	7.00	8.68		3.90	
23	0.6000	90.00	298.2	11.3	6.07	0.81	6.87	8.52		3.84	
24	0.7000	92.00	304.8	13.2	6.07	0.81	6.88	8.53		3.84	
25	0.8000	92.00	304.8	15.1	5.94	0.81	6.74	8.36		3.78	
26	0.9000	93.00	308.1	17.0	5.87	0.81	6.67	8.28		3.74	
27	1.0000	92.00	304.8	18.9	5.67	0.81	6.48	8.04		3.64	
28	1.1000	92.00	304.8	20.8	5.54	0.81	6.35	7.87		3.58	
29	1.2000	91.00	301.5	22.7	5.35	0.81	6.16	7.63		3.48	

P	arameters	for Specimen No	.2	
Specimen Parameter	Initial	Saturated	Final	
Moisture content: Moist soil+tare, gms.	299.270		1196.700	
Moisture content: Dry soil+tare, gms.	265.040		1041.800	
Moisture content: Tare, gms.	51.880		106.200	
Moisture, %	16.1	23.3	16.6	
Moist specimen weight, gms.	1099.1			
Diameter, in.	2.84	2.83		
Area, in. ²	6.33	6.28		
Height, in.	5.50	5.47		
Net decrease in height, in.		0.03		
Wet Density, pcf	120.2	129.4		
Dry density, pcf	103.5	105.0		
Void ratio	0.6651	0.6425		
Saturation, %	66.7	100.0		

Test Readings for Specimen No. 2

Load ring constant = 3.313 lbs. per input unit

Membrane modulus = 0.124105 kN/cm²

Membrane thickness = 0.02 cm

Cell pressure = 8.30 psi (1.20 ksf)

Back pressure = 0.00 psi (0.00 ksf)

Strain rate, in./min. = 0.05

Fail. Stress = 9.79 ksf at reading no. 18

No.	Def. Dial in.	Load Dial	Load lbs.	Strain %	Deviator Stress ksf	Minor Princ. Stress ksf	Major Princ. Stress ksf	1:3 Ratio	P ksf	Q ksf	
0	0.0000	0.00	0.0	0.0	0.00	1.20	1.20	1.00		1.20	
1	0.0010	3.00	9.9	0.0	0.23	1.20	1.42	1.19		1.31	
2	0.0050	11.00	36.4	0.1	0.84	1.20	2.03	1.70		1.61	
3	0.0100	18.00	59.6	0.2	1.37	1.20	2.56	2.14		1.88	
4	0.0150	24.00	79.5	0.3	1.82	1.20	3.01	2.52		2.10	
5	0.0200	28.00	92.8	0.4	2.12	1.20	3.32	2.77		2.26	
6	0.0250	32.00	106.0	0.5	2.42	1.20	3.62	3.03		2.41	
7	0.0300	37.00	122.6	0.5	2.80	1.20	3.99	3.34		2.59	
8	0.0350	40.00	132.5	0.6	3.02	1.20	4.22	3.53		2.71	
9	0.0400	45.00	149.1	0.7	3.40	1.20	4.59	3.84		2.89	
10	0.0450	49.00	162.3	0.8	3.69	1.20	4.89	4.09		3.04	
11	0.0500	54.00	178.9	0.9	4.07	1.20	5.26	4.40		3.23	
12	0.0750	80.00	265.0	1.4	6.00	1.20	7.19	6.02		4.19	
13	0.1000	100.00	331.3	1.8	7.46	1.20	8.66	7.24		4.93	
14	0.1250	117.00	387.6	2.3	8.69	1.20	9.88	8.27		5.54	
15	0.1500	126.00	417.4	2.7	9.31	1.20	10.51	8.79		5.85	
16	0.1750	130.00	430.7	3.2	9.56	1.20	10.76	9.00		5.98	
17	0.2000	132.00	437.3	3.7	9.67	1.20	10.86	9.09		6.03	
18	0.2500	135.00	447.3	4.6	9.79	1.20	10.99	9.19		6.09	
19	0.3000	133.00	440.6	5.5	9.55	1.20	10.75	8.99		5.97	
20	0.3500	132.00	437.3	6.4	9.39	1.20	10.59	8.86		5.89	
21	0.4000	130.00	430.7	7.3	9.16	1.20	10.35	8.66		5.77	
22	0.5000	128.00	424.1	9.1	8.84	1.20	10.04	8.40		5.62	
23	0.6000	127.00	420.8	11.0	8.59	1.20	9.79	8.19		5.49	
24	0.7000	129.00	427.4	12.8	8.55	1.20	9.75	8.15		5.47	
	MACTEC Engineering and Consulting, Inc.										

	120		and the same of		Test Re	adings for S	Specimen N	0.2			
No.	Def. Dial in.	Load Dial	Load lbs.	Strain %	Deviator Stress ksf	Minor Princ. Stress ksf	Major Princ. Stress ksf	1:3 Ratio	P ksf	Q ksf	
25	0.8000	130.00	430.7	14.6	8.44	1.20	9.63	8.06		5.41	
26	0.9000	127.00	420.8	16.4	8.07	1.20	9.26	7.75		5.23	
27	1.0000	126.00	417.4	18.3	7.83	1.20	9.02	7.55		5.11	
28	1.1000	125.00	414.1	20.1	7.59	1.20	8.79	7.35		4.99	
29	1.2000	124.00	410.8	21.9	7.36	1.20	8.55	7.16		4.87	

P	arameter	s for Specimen No. 3
Specimen Parameter	Initial	Saturated Final
Moisture content: Moist soil+tare, gms.	169.450	1346.000
Moisture content: Dry soil+tare, gms.	152.380	1169.600
Moisture content: Tare, gms.	50.720	115.300
Moisture, %	16.8	22.8 16.7
Moist specimen weight, gms.	1198.4	
Diameter, in.	2.84	2.83
Area, in. ²	6.33	6.29
Height, in.	5.90	5.88
Net decrease in height, in.		0.02
Wet Density, pcf	122.2	129.9
Dry density, pcf	104.6	105.7
Void ratio	0.6486	0.6310
Saturation, %	71.5	100.0
Te	st Readin	gs for Specimen No. 3

Load ring constant = 3.313 lbs. per input unit

Membrane modulus = 0.124105 kN/cm²

Membrane thickness = 0.02 cm

MICHIDIANE UNICANESS - 0.02 CILI

Cell pressure = 13.90 psi (2.00 ksf)

Back pressure = 0.00 psi (0.00 ksf)

Strain rate, in./min. = 0.05

Fail. Stress = 10.56 ksf at reading no. 20

No.	Def. Dial in.	Load Dial	Load lbs.	Strain %	Deviator Stress ksf	Minor Princ. Stress ksf	Major Princ. Stress ksf	1:3 Ratio	P ksf	Q ksf
0	0.0000	0.00	0.0	0.0	0.00	2.00	2.00	1.00		2.00
Beard	0.0010	8.00	26.5	0.0	0.61	2.00	2.61	1.30		2.30
2	0.0050	22.00	72.9	0.1	1.67	2.00	3.67	1.83		2.84
3	0.0100	31.00	102.7	0.2	2.35	2.00	4.35	2.17		3.18
4	0.0150	42.00	139.1	0.3	3.18	2.00	5.18	2.59		3.59
5	0.0200	50.00	165.7	0.3	3.78	2.00	5.78	2.89		3.89
6	0.0250	58.00	192.2	0.4	4.38	2.00	6.38	3.19		4.19
7	0.0300	66.00	218.7	0.5	4.98	2.00	6.98	3.49		4.49
8	0.0350	74.00	245.2	0.6	5.58	2.00	7.58	3.79		4.79
9	0.0400	81.00	268.4	0.7	6.10	2.00	8.10	4.05		5.05
10	0.0450	88.00	291.5	0.8	6.62	2.00	8.63	4.31		5.31
11	0.0500	95.00	314.7	0.9	7.14	2.00	9.15	4.57		5.57
12	0.0750	114.00	377.7	1.3	8.54	2.00	10.54	5.26		6.27
13	0.1000	124.00	410.8	1.7	9.25	2.00	11.25	5.62		6.62
14	0.1250	130.00	430.7	2.1	9.65	2.00	11.65	5.82		6.83
15	0.1500	135.00	447.3	2.6	9.98	2.00	11.98	5.99		6.99
							2 400			

CEPP Final PIR and EIS July 2014

	Test Readings for Specimen No. 3										
No.	Def. Dial in.	Load Dial	Load	Strain %	Deviator Stress ksf	Minor Princ. Stress ksf	Major Princ. Stress ksf	1:3 Ratio	P ksf	Q ksf	
16	0.1750	138.00	457.2	3.0	10.16	2.00	12.16	6.07		7.08	
17	0.2000	140.00	463.8	3.4	10.26	2.00	12.26	6.12		7.13	
18	0.2500	143.00	473.8	4.3	10.39	2.00	12.39	6.19		7.19	
19	0.3000	145.00	480.4	5.1	10.44	2.00	12.44	6.21		7.22	
20	0.3500	148.00	490.3	6.0	10.56	2.00	12.56	6.27		7.28	
21	0.4000	149.00	493.6	6.8	10.53	2.00	12.53	6.26		7.27	
22	0.5000	151.00	500.3	8.5	10.48	2.00	12.48	6.24		7.24	
23	0.6000	153.00	506.9	10.2	10.42	2.00	12.42	6.21		7.21	
24	0.7000	154.00	510.2	11.9	10.29	2.00	12.29	6.14		7.15	
25	0.8000	155.00	513.5	13.6	10.16	2.00	12.16	6.07		7.08	
26	0.9000	156.00	516.8	15.3	10.02	2.00	12.02	6.01		7.01	
27	1.0000	155.00	513.5	17.0	9.76	2.00	11.76	5.87		6.88	
28	1.1000	154.00	510.2	18.7	9.50	2.00	11.50	5.74		6.75	
29	1.2000	153.00	506.9	20.4	9.24	2.00	11.24	5.61		6.62	

Vaeth, Dick

From:

Stathis Payiatakis [stathisp@nodarse.com]

Sent:

Monday, February 06, 2006 7:53 AM

To:

Vaeth, Dick

Cc:

Stathis Payiatakis

Subject: FW: EAA Proctor

Dick,

As agreed on Friday

Regards Stathis P

From: Coleman, Mark [mailto:MACOLEMAN@mactec.com]

Sent: Friday, February 03, 2006 3:15 PM

To: Stathis Payiatakis **Subject:** EAA Proctor

Stathis,

I reviewed the select fill compaction test report for the EAA project, MACTEC project number 6738-05-4573-02. The test specification D-1557-91 procedure B modified shown on the report should be D-698-91 procedure B standard. If you have any questions please call.

Thanks,

Mark Coleman

MACTEC Engineering and Consulting

Jacksonville, Florida 32207

904-398-1084

Fax 904-398-1084

macoleman@mactec.com

Test specification: ASTM D 1557-91 Procedure B Modified

Oversize correction applied to each point

and the second name of the second	Elev/	Classit	Nat.	Sp.G.	L. L.	Di	% >	% <	10000000000	
and and and and and and	Depth	USCS	AASHTO	Moist.	5p.G.	L. L.	PI	3/8 in.	No.200	NATIONAL PROPERTY.
Widelinson		SM	A-1-b				Stephys And Confession and Confes	18.3	21.1	DAZGRAGIPANT TURGERAN

ROCK	MATERIAL DESCRIPTION	
Maximum dry density = 1	Light gray and tan clayey fine SAND with limerock and shell fragments	
Optimum moisture = 13.0	%	
Project No.: 6738-05-4573-0	2 Client: Nodarse and Associates, Inc.	Remarks:
Project: EAA		Rajori Sukhwami
• Source: Select Fill	Sample No.: composite	
CO		

MACTEC ENGINEERING AND CONSULTING, INC.

Reviewed By

olitetédemonoued		% COBBLES	% GRAVEL	% SAND	% SILT	% CLAY	USCS	AASHTO	PL	LL
Nation of the last	0	1.3	26.8	50.8	21.1		SM	A-1-b		
протоконира										
I	T									Γ

	SIEVE	PE	RCENT FINER				
	inches size	0					
	6 3 1.5 1 .75 .5 .375	100.0 98.7 95.3 92.2 89.3 84.4 81.7					
Professore		(GRAIN SIZE				
beautelean	D ₆₀	1.83					
Principle Continuent	D ₃₀	0.154					
() District Categoria	D ₁₀						
Surveyoran		COEFFICIENTS					
descriptions of	C _C						
grenaereconte	Cu						

SIEVE	PERCENT FINER								
number size	0		,						
#4 #10 #20 #40 #60 #100 #200	71.9 61.0 51.2 43.0 36.2 29.7 21.1								

delication of the last	SOIL DESCRIPTION
Account to the last of the las	Light gray and tan clayey fine SAND with limerock and shell fragments
Application of the last	and the colour war and boundaries

REMARKS:

O Source: Select Fill Sample No.: composite

MACTEC ENGINEERING. AND CONSULTING, INC. Client: Nodarse and Associates, Inc.

Project: EAA

Project No.: 6738-05-4573-02

Reviewed By

Client: Nodarse and Associates, Inc.

Project: EAA

roject Number: 6738-05-4573-02

Sample Data

Source: Select Fill Sample No.: composite

Elev. or Depth:

Location:

Description: Light gray and tan clayey fine SAND with limerock and shell

fragments

Liquid Limit:

Plastic Limit:

USCS Classification: SM

AASHTO Classification: A-1-b

Sample Length (in./cm.):

Testing Remarks:

Mechanical Analysis Data

Initial

Dry sample and tare= 183928.00

Tare nainea China

Dry sample weight = 183928.00

Sample split on .5 inch sieve

Split sample data:

Sample and tare = 478.20 Tare = .00 Sample weight = 478.20

Cumulative weight retained tare= .00

Tare for cumulative weight retained= .00

	Sieve	Cumul. Wt.	Percent
9		retained	finer
	6 inch	0.00	100.0
	3 inch	2404.00	98.7
	1.5 inch	8637.00	95.3
	1 inch	14330.00	92.2
	.75 inch	19677.00	89.3
	.5 inch	28701.00	84.4
	.375 inch	15.49	81.7
	# 4	70.85	71.9
	# 10	132.55	61.0
	# 20	188.10	51.2
	# 40	234.34	43.0
	# 60	273.23	36.2
	# 100	309.97	29.7
	# 200	358.68	21.1

Fractional Components

Gravel/Sand based on #4

Sand/Fines based on #200

% **COBBLES** = 1.3

% GRAVEL = 26.8 % SAND = 50.8

% FINES = 21.1

 $D_{85} = 13.42$ $D_{60} = 1.83$ $D_{50} = 0.77$

0.15

MOISTURE DENSITY TEST DATA

Client: Nodarse and Associates, Inc.

Project: EAA

Project Number: 6738-05-4573-02

Specimen Data

Source: Select Fill Sample No.: composite

Elev. or Depth:

Sample Length (in./cm.):

Location:

Description: Light gray and tan clayey fine SAND with limerock and shell

fragments

USCS Classification: SM

AASHTO Classification: A-1-b

Natural Moisture:

Liquid Limit:

Plasticity Index:

Testing Remarks:

Percent retained on 3/8 in. sieve: 18.3

Percent passing No. 200 sieve: 21.1 Specific gravity:

Test Data And Results

Type of test: ASTM D 1557-91 Procedure B Modified

Mold Dia.: 4.00 in. Hammer Wt.: 10 lb. Drop: 18 in.

Layers: five Blows per Layer: 25

POINT NO. 1 2 3 6084.0 6114.0 WM + WS 5941.0 5850.0 MM 4129.0 4129.0 4129.0 4129.0 WW+T 540.90 451.40 507.80 478.20 WD+T 478.20 388.78 455.60 435.46 TARE 0.00 0.00 0.00 0.00 13.1 16.1 11.5 9.8 MOIST

MOISTURE 12.6 15.0 11.2 9.9 DRY DEN 117.0 116.0 111.2 107.8

Max dry den= 118.0 pcf Opt moisture= 13.0 % Uncorrected Results: Max dry den= 115.5 pcf Opt moisture= 14.0 %

ASTM D 4718 Correction Data:

Bulk Specific Gravity of Oversize Material = 2.095

Moisture of Oversize Material = 10.2 %

Corrections Applied to Every Test Point

Total Normal Stress, ksf -Effective Normal Stress, ksf ----

Sample No. 2 3 1 Water Content, 16.2 16.2 16.2 Dry Density, pcf 108.3 108.0 110.0 Saturation, 75.6 75.0 78.7 0.5917 0.5966 Void Ratio 0.5674 2.84 Diameter, in. 2.84 2.84 Height, in. 5.58 5.54 5.43 Water Content, 20.1 21.1 20.0 Dry Density, pcf 110.9 108.9 111.1 100.0 100.0 100.0 Saturation, 0.5518 0.5836 Void Ratio 0.5543 2.83 2.83 Diameter, in. 2.82 5.54 5.53 5.41 Height, in. 0.05 0.05 0.05 Strain rate, in./min. Back Pressure, ksf 7.2 7.2 7.2 8.0 8.4 9.2 Cell Pressure, ksf 11.1 17.0 Fail. Stress, ksf 14.6 Total Pore Pr., ksf 7.2 7.1 7.3 Ult. Stress, ksf Total Pore Pr., ksf σ₁ Failure, ksf 11.9 15.8 18.9 1.3 σ₃ Failure, ksf 0.8 1.9

Type of Test:

CU with Pore Pressures Sample Type: remold

Description: Tan Slightly Clayey Silty Medium to

Fine SAND with Shell and Rock Fragments

Specific Gravity= 2.762

Remarks:

Client: Nodarse and Associates

Project: Material Testing-Nodarse

Sample Number: CU-95%-B

Proj. No.: 6738-05-4573

Date: 6-12-05

TRIAXIAL SHEAR TEST REPORT

MACTEC ENGINEERING AND CONSULTING, INC.

Reviewed By

Tested By: mc

Checked By:

Tested By: mc Checked By:

TRIAXIAL COMPRESSION TEST

CU with Pore Pressures

6/16/2005 10:57 AM

July 2014

Date:

6-12-05

Client:

Nodarse and Associates

Project:

Material Testing-Nodarse

Project No.:

6738-05-4573

Sample Number:

CU-95%-B

Description:

Tan Slightly Clayey Silty Medium to Fine SAND with Shell and Rock Fragments

Remarks:

Type of Sample:

remold

Specific Gravity=2.762

LL=

PL=

PI=

Test Method:

COE uniform strain

rest method. COD minoring sud	III			
	³ arameters	s for Specimen N	0.1	
Specimen Parameter	Initial	Saturated	Consolidated	Final
Moisture content: Moist soil+tare, gms.	. 173.410			1326.000
Moisture content: Dry soil+tare, gms.	156.910			1142.000
Moisture content: Tare, gms.	55.030			115.790
Moisture, %	16.2	21.4	20.1	17.9
Moist specimen weight, gms.	1167.9			
Diameter, in.	2.84	2.84	2.82	
Area, in. ²	6.33	6.33	6.23	
Height, in.	5.58	5.58	5.54	
Net decrease in height, in.		0.00	0.04	
Wet Density, pcf	125.9	131.5	133.2	
Dry density, pcf	108.3	108.3	110.9	
Void ratio	0.5917	0.5917	0.5543	
Saturation, %	75.6	100.0	100.0	

Test Readings for Specimen No. 1

Load ring constant = 3.313 lbs. per input unit

Membrane modulus = 0.124105 kN/cm²

Membrane thickness = 0.02 cm

Consolidation cell pressure = 55.60 psi (8.01 ksf)

Consolidation back pressure = 50.00 psi (7.20 ksf)

Consolidation effective confining stress = 0.81 ksf

Strain rate, in./min. = 0.05

Fail. Stress = 11.10 ksf at reading no. 24

586				egggaan samo				08.000000000000000000000000000000000000	na (4.0250.00000)				
	App A	Annex G	i-1			Test Re	adings fo	r Specim	_{ie} Geolo	gical Inves	tigation	s North of Re	dline
	No	Def. Díal . in.	Load Dial	Load lbs.	Strain	Deviator Stress ksf	Minor Eff. Stress ksf	Major Eff. Stress ksf	1:3 Ratio	Pore Press. psi	P ksf	Q ksf	
	0	0.0000	0.00	0.0	0.0	0.00	0.95	0.95	1.00	49.00	0.95	0.00	
	1	0.0010	8.00	26.5	0.0	0.61	0.94	1.55	1.65	49.10	1.24	0.31	
	2	0.0050	19.00	62.9	0.1	1.45	0.91	2.36	2.60	49.30	1.63	0.73	
	3	0.0100	26.00	86.1	0.2	1.99	0.89	2.88	3.22	49.40	1.89	0.99	
	4	0.0150	29.00	96.1	0.3	2.21	0.88	3.09	3.52	49.50	1.98	1.11	
	5	0.0200	31.00	102.7	0.4	2.36	0.86	3.23	3.74	49.60	2.05	1.18	
	6	0.0250	34.00	112.6	0.5	2.59	0.84	3.43	4.10	49.80	2.13	1.29	
	7	0.0300	36.00	119.3	0.5	2.74	0.84	3.57	4.28	49.80	2.21	1.37	
	8	0.0350	38.00	125.9	0.6	2.89	0.82	3.71	4.52	49.90	2.27	1.44	
	9	0.0400	40.00	132.5	0.7	3.04	0.82	3.86	4.70	49.90	2.34	1.52	
	10	0.0450	43.00	142.5	0.8	3.26	0.82	4.08	4.98	49.90	2.45	1.63	
	11	0.0500	46.00	152.4	0.9	3.49	0.84	4.32	5.18	49.80	2.58	1.74	
	12	0.0750	75.00	248.5	1.4	5.66	0.85	6.51	7.66	49.70	3.68	2.83	
	13	0.1000	95.00	314.7	1.8	7.14	0.88	8.02	9.13	49.50	4.45	3.57	
	14	0.1250	105.00	347.9	2.3	7.85	0.86	8.72	10.09	49.60	J4.79	3.93	
	15	0.1200	115.00	381.0	2.2	8.61	5.20	13.81	2.66	19.50	9.50	4.30	
	16	0.1750	123.00	407.5	3.2	9.11	0.88	9.99	11.38	49.50	5.44	4.56	
	17	0.2000	127.00	420.8	3.6	9.37	0.84	10.20	12.21	49.80	5.52	4.68	
	18	0.3000	139.00	460.5	5.4	10.06	0.84	10.89	13.04	49.80	5.86	5.03	
	19	0.3000	139.00	460.5	5.4	10.06	0.84	10.89	13.04	49.80	5.86	5.03	
	20	0.3500	142.00	470.4	6.3	10.18	0.84	11.01	13.19	49.80	5.92	5.09	
	21	0.4000	145.00	480.4	7.2	10.29	0.85	11.14	13.12	49.70	6.00	5.15	
	22	0.5000	150.00	497.0	9.0	10.44	0.85	11.29	13.29	49.70	6.07	5.22	
	23	0.6000	155.00	513.5	10.8	10.57	0.85	11.42	13.45	49.70	6.14	5.29	
	24	0.7000	166.00	550.0	12.6	11.10	0.85	11.95	14.06	49.70	6.40	5.55	
	25	0.8000	166.00	550.0	14.5	10.87	0.86	11.73	13.58	49.60	6.30	5.43	
	26	0.9000	170.00	563.2	16.3	10.89	0.86	11.76	13.61	49.60	6.31	5.45	
	27	1.0000	174.00	576.5	18.1	10.91	0.86	11.77	13.63	49.60	6.32	5.45	
	28	1.1000	179.00	593.0	19.9	10.98	0.88	11.85	13.49	49.50	6.37	5.49	
				50 C 0									

0.89 11.68 13.08 49.40 6.29 5.39

MACTEC Engineering and Consulting, Inc.

29 1.2000 180.00 596.3 21.7 10.79

App A Annex G-1	Parameters f	or Specimen Geo	l <mark>o</mark> gical Investigations I	North of Redline
Specimen Parameter	Initial	Saturated	Consolidated	Final
Moisture content: Moist soil+tare, gms	i. 173.410			1288.400
Moisture content: Dry soil+tare, gms.	156.910			1108.100
Moisture content: Tare, gms.	55.030			95.600
Moisture, %	16.2	21.6	21.1	17.8
Moist specimen weight, gms.	1156.0			
Diameter, in.	2.84	2.84	2.83	
Area, in. ²	6.33	6.33	6.30	
Height, in.	5.54	5.54	5.53	
Net decrease in height, in.		0.00	0.01	
Wet Density, pcf	125.5	131.3	131.9	
Dry density, pcf	108.0	108.0	108.9	
Void ratio	0.5966	0.5966	0.5836	
Saturation, %	75.0	100.0	100.0	

Test Readings for Specimen No. 2

Load ring constant = 3.313 lbs. per input unit

Membrane modulus = 0.124105 kN/cm^2

Membrane thickness = 0.02 cm

Consolidation cell pressure = 58.30 psi (8.40 ksf)

Consolidation back pressure = 50.00 psi (7.20 ksf)

Consolidation effective confining stress = 1.20 ksf

Strain rate, in./min. = 0.05

Fail. Stress = 14.58 ksf at reading no. 26

No	Def. Dial in.	Load Dial	Load lbs.	Strain %	Deviator Stress ksf	Minor Eff. Stress ksf	Major Eff. Stress ksf	1:3 Ratio	Pore Press. psi	p ksf	Q ksf
0	0.0000	0.00	0.0	0.0	0.00	1.38	1.38	1.00	48.70	1.38	0.00
1	0.0010	10.00	33.1	0.0	0.76	1.35	2.11	1.56	48.90	1.73	0.38
2	0.0050	24.00	79.5	0.1	1.82	1.31	3.13	2.39	49,20	2.22	0.91
3	0.0100	33.00	109.3	0.2	2.49	1.30	3.79	2.92	49.30	2.54	1.25
4	0.0150	39.00	129.2	0.3	2.95	1.28	4.23	3.30	49.40	2.75	1.47
5	0.0200	44.00	145.8	0.4	3.32	1.28	4.60	3.59	49.40	2.94	1.66
6	0.0250	49.00	162.3	0.5	3.69	1.27	4.96	3.91	49.50	3.11	1.85
7	0.0300	53.00	175.6	0.5	3.99	1.27	5.26	4.15	49.50	3.26	2.00
8	0.0350	57.00	188.8	0.6	4.29	1.25	5.54	4.42	49.60	3.40	2.14
9	0.0400	62.00	205.4	0.7	4.66	1.22	5.88	4.81	49.80	3.55	2.33
10	0.0450	66.00	218.7	0.8	4.96	1.20	6.15	5.15	50.00	3.67	2.48
11	0.0500	72.00	238.5	0.9	5.40	1.17	6.57	5.63	50.20	3.87	2.70
12	0.0750	91.00	301.5	1.4	6.80	1.17	7.96	6.83	50.20	4.56	3.40
13	0.1000	104.00	344.6	1.8	7.73	1.20	8.93	7.47	50.00	5.06	3.87
14	0.1250	112.00	371.1	2.3	8.29	1.20	9.48	7.94	50.00	5.34	4.14
15	0.1500	117.00	387.6	2.7	8.62	1.20	9.81	8.21	50.00	5.50	4.31
16	0.1750	125.00	414.1	3.2	9.17	1.20	10.36	8.67	50.00	5.78	4.58
17	0.2000	135.00	447.3	3.6	9.85	1.21	11.06	9.15	49.90	6.14	4.93
18	0.2500	145.00	480.4	4.5	10.48	1.21	11.69	9.67	49.90	6.45	5.24
19	0.3000	160.00	530.1	5.4	11.46	1.21	12.67	10.47	49.90	6.94	5.73
20	0.3500	178.00	589.7	6.3	12.62	1.22	13.85	11.31	49.80	7.54	6.31
21	0.4000	184.00	609.6	7.2	12.92	1.22	14.15	11.56	49.80	7.69	6.46
22	0.5000	194.00	642.7	9.0	13.36	1.24	14.60	11.79	49.70	7.92	6.68
23	0.6000	204.00	675.9	10.9	13.77	1.25	15.02	11.99	49.60	8.14	6.88
									_		

App A	Annex	G-1	and the		Test Re	adings fo	r Specim	an Geol	ogical Inve	estigation	s North o	f Redline
No.	Def. Dial in.	Load Dial	Load lbs.	Strain %	Deviator Stress ksf	Minor Eff. Stress ksf	Major Eff. Stress ksf	1:3 Ratio	Pore Press. psi	P ksf	Q ksf	
24	0.7000	214.00	709.0	12.7	14.15	1.27	15.42	12.17	49.50	8.34	7.08	
25	0.8000	222.00	735.5	14.5	14.38	1.27	15.64	12.34	49.50	8.46	7.19	
26	0.9000	230.00	762.0	16.3	14.58	1.25	15.83	12.64	49.60	8.54	7.29	
27	1.0000	235.00	778.6	18.1	14.57	1.25	15.83	12.63	49.60	8.54	7.29	
28	1.1000	238.00	788.5	19.9	14.43	1.25	15.69	12.52	49.60	8.47	7.22	
29	1.2000	240.00	795.1	21.7	14.23	1.25	15.48	12.36	49.60	8.37	7.11	

A STATE OF STATE OF P	arameters	for Specimen N	3 - 4 - 1 - 1 - 1 - 1	
Specimen Parameter	Initial	Saturated	Consolidated	Final
Moisture content: Moist soil+tare, gms.	132.350			1281.400
Moisture content: Dry soil+tare, gms.	121.490			1110.500
Moisture content: Tare, gms.	54.280			106.100
Moisture, %	16.2	20.5	20.0	17.0
Moist specimen weight, gms.	1153.8			
Diameter, in.	2.84	2.84	2.83	
Area, in. ²	6.33	6.33	6.29	
Height, in.	5.43	5.43	5.41	
Net decrease in height, in.		0.00	0.02	
Wet Density, pcf	127.8	132.6	133.3	
Dry density, pcf	110.0	110.0	111.1	
Void ratio	0.5674	0.5674	0.5518	
Saturation, %	78.7	100.0	100.0	

Test Readings for Specimen No. 3

Load ring constant = 3.313 lbs. per input unit

Membrane modulus = 0.124105 kN/cm^2

Membrane thickness = 0.02 cm

Consolidation cell pressure = 63.90 psi (9.20 ksf)

Consolidation back pressure = 50.00 psi (7.20 ksf)

Consolidation effective confining stress = 2.00 ksf

Strain rate, in./min. = 0.05

Fail. Stress = 17.00 ksf at reading no. 22

No.	Def. Dial in.	Load Dial	Load lbs.	Strain %	Deviator Stress ksf	Minor Eff. Stress ksf	Major Eff. Stress ksf	1:3 Ratio	Pore Press. psi	P ksf	Q ksf	
0	0.0000	0.00	0.0	0.0	0.00	2.17	2.17	1.00	48.80	2.17	0.00	
1	0.0010	5.00	16.6	0.0	0.38	2.17	2.55	1.17	48.80	2.36	0.19	
2	0.0050	22.00	72.9	0.1	1.67	2.03	3.70	1.82	49.80	2.86	0.83	
3	0.0100	39.00	129.2	0.2	2.95	1.90	4.85	2.55	50.70	3.38	1.48	
4	0.0150	52.00	172.3	0.3	3.93	1.86	5.79	3.12	51.00	3.82	1.97	
5	0.0200	62.00	205.4	0.4	4.68	1.84	6.53	3.54	51.10	4.18	2.34	
6	0.0250	69.00	228.6	0.5	5.21	1.84	7.05	3.82	51.10	4.45	2.60	
7	0.0300	77.00	255.1	0.6	5.81	1.84	7.65	4.15	51.10	4.75	2.90	
8	0.0350	85.00	281.6	0.6	6.40	1.84	8.25	4.47	51.10	5.04	3.20	
9	0.0400	91.00	301.5	0.7	6.85	1.84	8.69	4.72	51.10	5.27	3.42	
10	0.0450	98.00	324.7	0.8	7.37	1.84	9.21	5.00	51.10	5.53	3.68	
11	0.0500	104.00	344.6	0.9	7.81	1.84	9.65	5.24	51.10	5.75	3.91	
12	0.0750	138.00	457.2	1.4	10.32	1.86	12.17	6.55	51.00	7.02	5.16	
13	0.1000	166.00	550.0	1.8	12.35	1.86	14.21	7.65	51.00	8.03	6.18	
	MACTEC Engineering and Consulting, Inc.											

Арр	A Annex	G-1			Test Re	adings fo	Specim	en l d ec	lógical In	vestigatio	ns North of Redline	
No.	Def. Dial in.	Load Dial	Load lbs.	Strain %	Deviator Stress ksf	Minor Eff. Stress ksf	Major Eff. Stress ksf	1:3 Ratio	Pore Press. psi	P ksf	Q ksf	
14	0.1250	180.00	596.3	2.3	13.33	1.86	15.19	8.18	51.00	8.52	6.67	
15	0.1500	198.00	656.0	2.8	14.60	1.87	16.47	8.80	50.90	9.17	7.30	
16	0.1750	215.00	712.3	3.2	15.77	1.87	17.64	9.43	50.90	9.76	7.89	
17	0.2000	222.00	735.5	3.7	16.21	1.87	18.08	9.66	50.90	9.98	8.10	
18	0.2500	227.00	752.1	4.6	16.41	1.87	18.29	9.77	50.90	10.08	8.21	
19	0.3000	232.00	768.6	5.5	16.61	1.87	18.49	9.87	50.90	10.18	8.31	
20	0.3500	237.00	785.2	6.5	16.81	1.87	18.68	9.98	50.90	10.27	8.40	
21	0.4000	241.00	798.4	7.4	16.92	1.89	18.81	9.97	50.80	10.35	8.46	
22	0.5000	247.00	818.3	9.2	17.00	1.90	18.90	9.94	50.70	10.40	8.50	
23	0.6000	251:00	831.6	11.1	16.92	1.92	18.83	9.83	50.60	10.37	8.46	
24	0.7000	253.00	838.2	12.9	16.70	1.93	18.63	9.65	50.50	10.28	8.35	
25	0.8000	252.00	834.9	14.8	16.28	1.94	18.22	9.37	50.40	10.08	8.14	
26	0.9000	251.00	831.6	16.6	15.86	1.96	17.82	9.10	50.30	9.89	7.93	
27	1.0000	257.00	851.4	18.5	15.88	1.97	17.86	9.05	50.20	9.91	7.94	
28	1.1000	258.00	854.8	20.3	15.58	1.99	17.57	8.84	50.10	9.78	7.79	
29	1.2000	266.00	881.3	22.2	15.69	2.00	17.70	8.84	50.00	9.85	7.85	